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Abstract The graphs play an important role in our daily life. For example,
the urban transport network can be represented by a graph, as the intersections
are the vertices and the streets are the edges of the graph. Suppose that some
edges of the graph are removed, the question arises, how damaged the graph is.
There are some criteria for measuring the vulnerability of graph; the tenacity
is the best criteria for measuring it. In this paper, we find some edge cut sets
for organic compounds CnH2n+2 and obtain an upper bound for Te(CnH2n+2)
by these edge cut sets.
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Tree
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1 Introduction

Let G = (V (G), E(G)) be a graph. Consider some edges of G are deleted, so
a problem is mentioned, how much the graph G is damaged. Some items are
important to check the vulnerability of G, (1) the number of elements that are
omitted, (2) the number of remaining connected subgraphs, (3) and the num-
ber of edges in the largest components of the graph after deleting the edges.
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With these items some criteria are defined, edge connectivity, toughness, scat-
tering, integrity, tenacity, rupture degree, etc. The connectivity is a parameter
defined based on Quantity (1). Both toughness and scattering number take
into account Quantities (1) and (2). The integrity is defined based on Quan-
tities (1) and (3). Both the tenacity and rupture degree take into account all
the three Quantities [2]. Some researchers compare these criteria and result
shows the tenacity and the edge-tenacity are best criteria for measuring the
vulnerability of G [3], [5], [6], [8]. We try on Edge Tenacity of CnH2n+2 by
using the definition of Edge Tenacity. In section 2 we obtain the Edge Tenacity
for Methane, Ethan and Propane. Obtaining all edge cut sets is difficult so we
reach some edge cut sets, and we calculate these YAFs, we work it in section
3. In section 4 we compare these amounts by 1

2 or other case and obtain a
bound for Edge Tenacity of CnH2n+2.

2 Background

Definition 1 Consider a graph G = (V,E), V is the set of vertices of G and
E is the set of edges of G. Show the number of vertices by ν and the number
of edges of G by ε. We call G is empty if ε = 0. If ν and ε are finite G is called
finite.
A tree is a connected acyclic graph. For every tree, ε = ν − 1. The graph of
CnH2n+2 is a tree.

Definition 2 A cut edge of G is an edge e such that ω(G − e) > ω(G). Let
X and Y be subsets of V (G) (not necessary disjoint). We denote by [X,Y ],
the set of edges of G with one end in X and the other end in Y . When X is a
proper subset of V (G) and Y = V \X, the set [X,Y ] is called an edge cut of
G.

Definition 3 Tenacity of a graph is defined as

T (G) = min{ |S|+ τ(G− S)

ω(G− S)
},

where the minimization is over S, vertex cut set of G; |S| is the number of
vertices in S, τ(G− S) is the number of vertices in the largest component of
G−S, and ω(G−S) is the number of components of G−S. A Connected graph
G is called T -tenacious, if for any subset S of vertices of G with ω(G−S) ≥ 1,
we have |S| + τ(G − S) ≥ T.ω(G − S). If G is not a complete graph, then
there is a largest T such that G is T -tenacious; this T is the tenacity of G.
On the other hand, a complete graph contains no vertex cutset and so it is T -
tenacious for every T . Accordingly, we define T (Kp) =∞ for every p (p ≥ 1).

A set S ⊂ V (G) is said to be a T -set of G if T (G) = |S|+τ(G−S)
ω(G−S) [2].

Edge tenacity is defined similarly,

Te(G) = min{ |E|+ τ(G− E)

ω(G− E)
}, (1)
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where the minimization is over edge cut sets E, τ(G−S) is the number of edges
in the largest component of G−S and ω(G−S) is the number of components
of G− S.

In this paper, the amount of |E|+τ(G−E)
ω(G−E) is called the ” YIELD AMOUNT

OF FRACTION (YAF) ”, made by a set E, and will be represented by a sym-
bol YAF(E).

Fig. 1 Graph of CnH2n+2

As we see the edge tenacity of a graph is depended on edge cut sets of
this graph, so first we obtain some edge cut sets of CnH2n+2. Assign to the
Carbon atom by C1, C2, · · · , Cn; and assign to the edge joining Carbon atom
and Hydrogen atom by e, and the edge joining two Carbon atoms by α. The
graph of CnH2+2 is in Figure 1.

3 Some example of Edge Tenacity of CnH2n+2

Proposition 1 Every edge in a tree is a cut edge [1].

The graph of CnH2n+2 is a tree, so all edges are cut edges. We work on all
edges of the graph. First, we obtain the edge tenacity for simple cases.

Edge Tenacity of CH4

The graph of Methane doesn’t have any edge of the type α and all of its edges
are of the type e. Let E be a subset of E(G) that has i edge of the type e, so
|E| = i, 1 ≤ i ≤ 4, ω(G− E) = 1 + i and τ(G− E) = 4− i, thus

Te(CH4) = minE{
|E|+ τ(G− E)

ω(G− E)
} = min1≤i≤4{

4

1 + i
} =

4

5
.
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Fig. 2 Graph of methane

Edge Tenacity of C2H6

Fig. 3 Graph of ethane
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The graph of Ethane has an edge of the type α and six edges of the type
e, see Figure 3. If E just has i edges of the type e, then

Y AF (E) =
ε

1 + i
=

7

1 + i
, 1 ≤ i ≤ 6.

Fig. 4 Graph of C2H6 − α

Consider E0 = {α1}, so

|E0| = 1, ω0 = ω(G− E0) = 2, τ0 = τ(G− E0) = 3,

and Y AF (E0) = 2, see Figure 4.
Assume E = E0 ∪A, that A contains 1 edge of the type e, so

|E| = |E0|+ 1, τ(G− E) = τ0, ω(G− E) = ω0 + 1,

then Y AF (E) = 5
3 .

Assume E = E0 ∪ A, that A contains 2 edges of the type e. If both edges e
belong to G1 or belong to G2, then

|E| = |E0|+ 2, ω = ω0 + 2, τ = τ0,

and thus Y AF (E) = 6
4 . If one edge e belongs to G1 and the other edge belongs

to G2, then
|E| = |E0|+ 2, ω = ω0 + 2, τ = τ0 − 1,

and thus Y AF (E) = 5
4 .

Assume E = E0 ∪A, that A contains three edges of the type e, so

|E| = |E0|+ 3, ω = ω0 + 3.
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If these edges belong to one component of G − E0, so τ = τ0 and then
Y AF (E) = 7

5 . If one edge belongs to a component and other edges belong
to the other component, so τ = τ0 − 1 and then Y AF (E) = 6

5 .
Assume E = E0 ∪A, that A contains four edges of the type e, so

|E| = |E0|+ 4, ω = ω0 + 4.

If three edges e belong to one component of G − E0, so τ = τ0 − 1 and then
Y AF (E) = 7

6 . If two edges e belong to one component of G − E0 and other
edges belong to other component, so τ = τ0 − 2 and then Y AF (E) = 1.
Assume E = E0 ∪A, that A contains five edges of the type e, so

|E| = |E0|+ 5, ω = ω0 + 5.

In this case, three edges of the type e are in a component and other edges
belong to other component, then τ = τ0 − 2 = 1, and thus Y AF (E) = 1.
Assume E = E0 ∪A, that A contains all of edges of the type e, so

|E| = |E0|+ 6, ω = ω0 + 6, τ = τ0 − 3 = 0,

thus Y AF (E) = 7
8 .

We checked all edge cut sets and their YAFs. By Definition 3, we have

Te(C2H6) = min{E|E is an edge cut set}{
|E|+ τ(G− E)

ω(G− E)
} =

7

8
.

Edge Tenacity of C3H8

Fig. 5 Graph of C3H8
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Fig. 6 Graph of C3H8 − {α1}

Graph of molecule propane is symmetric, so all cases for α1 is true for α2.

Consider E0 = {α1}. Name the components of G− E0 by G1 and G2, so

|E0| = 1, ω0 = ω(G− E0) = 2, τ0 = τ(G− E0) = 6,

thus Y AF (E0) = 7
2 .

Assume E = E0 ∪A, that A contains one edge of the type e,

|E| = |E0|+ 1, ω = ω0 + 1.

The amount of τ is changed, depending on the edge e belongs to G1 or G2 .
If e ∈ E(G1), so τ = τ0 and then Y AF (E) = 8

3 . If e ∈ E(G2), so τ = τ0 − 1
and then Y AF (E) = 7

3 .
Assume E = E0 ∪A, that A contains two edges of the type e ,then

|E| = |E0|+ 2, ω = ω0 + 2.

If both edges belong to G1, so τ = τ0 and Y AF (E) = 9
4 . If both edges belong

to G2, so τ = τ0 − 2 and Y AF (E) = 7
4 . If one edge belongs to G1 and other

one belongs to G2, then τ = τ0 − 1 and Y AF (E) = 8
4 .

Assume E = E0 ∪A, that A contains three edges of the type e, thus

|E| = |E0|+ 3, ω = ω0 + 3.

If three edges belong to G1, so τ = τ0 and thus Y AF (E) = 10
5 . If exactly two

edges belong to G1, so τ = τ0 − 1 and then Y AF (E) = 9
5 . If just one edge

belongs to G1, so τ = τ0 − 2 and then Y AF (E) = 8
5 . If no one edges belong

to G1, we have τ = τ0 − 3 and therefore Y AF (E) = 7
5 .

Assume E = E0 ∪A, that A contains four edges of the type e, then

|E| = |E0|+ 4, ω = ω0 + 4.
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If four edges are in E(G2), so τ = |E(G1)| = 3 and thus Y AF (E) = 8
6 . If

three are in E(G2), so τ = τ0 − 3 = 3 and then Y AF (E) = 8
6 . If two edges

are in E(G2), so τ = τ0 − 2 = 4 and thus Y AF (E) = 9
6 . If just one edge is in

E(G2), so τ = τ0 − 1 = 5 and then Y AF (E) = 10
6 .

Assume E = E0 ∪A, that A contains five edges of the type e, therefore

|E| = |E0|+ 5, ω = ω0 + 5.

If two edges belong to E(G2), so τ = τ0 − 2 = 4 and then Y AF (E) = 10
7 . If

three edges belong to E(G2), so τ = τ0− 3 = 3 and thus Y AF (E) = 9
7 . If four

edges belong to E(G2), so τ = 2 and then Y AF (E) = 8
7 . If five edges belong

to E(G2), so τ = |E(G1)| = 3 and thus Y AF (E) = 9
7 .

Assume E = E0 ∪A, that A contains six edges of the type e, therefore

|E| = |E0|+ 6, ω = ω0 + 6.

If three edges are in E(G2), so τ = τ0−3 = 3 and Y AF (E) = 10
8 . If four edges

are in E(G2), so τ = τ0 − 4 = 2 and Y AF (E) = 9
8 . If five edges are in E(G2),

so τ = 2 and Y AF (E) = 9
8 .

Assume E = E0 ∪A, that A contains seven edges of the type e, so

|E| = |E0|+ 7, ω = ω0 + 7.

If four edges belong to E(G2), so τ = 2 and thus Y AF (E) = 10
9 . If five edges

belong to E(G2), so τ = 1 and Y AF (E) = 1.
Assume E = E0 ∪A, that A contains eight edges of the type e, therefore

|E| = |E0|+ 8, ω = ω0 + 8, τ = 1,

and then Y AF (E) = 1.
Consider E0 = {α1, α2}, so

|E0| = 2, ω0 = 3, τ0 = 3

and Y AF (E0) = 5
3 .

If E = E0 ∪A, that A contains one edge of the type e, so

|E| = |E0|+ 1, ω = ω0 + 1, τ = τ0,

therefore Y AF (E) = 6
4 .

Assume E = E0 ∪A, that A contains two edges of the type e, so

|E| = |E0|+ 2, ω = ω0 + 2.

If both edges belong to E(G1) or E(G2), then τ = τ0 and Y AF (E) = 7
5 . If one

edge belongs to E(G1) or E(G3) and other one belongs to E(G2), then τ = τ0
and Y AF (E) = 7

5 . If one edge belongs to E(G1) and other edge belongs to
E(G3), then τ = τ0 − 1 and Y AF (E) = 6

5 .
Assume E = E0 ∪A, that A contains three edges of the type e, therefore

|E| = |E0|+ 3, ω = ω0 + 3.
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If three edges are in E(G1) or E(G3), so τ = τ0 and then Y AF (E) = 8
6 . If three

edges are in E(G1 ∪G2) or E(G3)∪E(G2), so τ = τ0 and then Y AF (E) = 8
6 .

If three edges belong to E(G1) ∪ E(G3) (not only in one), so τ = τ0 − 1 = 2
and Y AF (E) = 7

6 .
Assume E = E0 ∪A, that A contains four edges of the type e, therefore

|E| = |E0|+ 4, ω = ω0 + 4.

If these edges are in E(G1) ∪ E(G2) or E(G2) ∪ E(G3), then τ = τ0 and
Y AF (E) = 9

7 . If these edges are in E(G1) ∪ E(G3), so τ = 2 and then
Y AF (E) = 8

7 .
Assume E = E0 ∪A, that A contains five edges of the type e, therefore

|E| = |E0|+ 5, ω = ω0 + 5.

If these edges belong to E(G1) ∪ E(G3), so τ = 2, and then Y AF (E) = 9
8 . If

these edges belong to E(G1) ∪ E(G2) or E(G2) ∪ E(G3), so τ = τ0 = 3 and
then Y AF (E) = 10

8 .
Assume E = E0 ∪A, that A contains six edges of the type e, so

|E| = |E0|+ 6, ω = ω0 + 6.

If no one edges belong to E(G2), so τ = 2 and thus Y AF (E) = 10
9 . If just

one edge belongs to E(G2) , so τ = 1 and then Y AF (E) = 1. If two edges
are in E(G2) and three edges belong to E(G1) or E(G3), so τ = 2 and then
Y AF (E) = 10

9 . If two edges belong to E(G2), two edges belong to E(G1) and
two edges belong to E(G3), so τ = 1 and thus Y AF (E) = 1.
Assume E = E0 ∪A, that A has seven edges of the type e, so

|E| = |E0|+ 7, ω = ω0 + 7.

In this case one edge is or two edges are in E(G2), by any way, τ = 1 and
therefore Y AF (E) = 1.
Assume E = E0 ∪A, that A has eight edges of the type e, so

|E| = |E0|+ 8, ω = ω0 + 8, τ = 0,

therefore Y AF (E) = 10
11 < 1.

Therefore by Definition 3,

Te(C3H8) =
10

11
.
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Fig. 7 Graph of C3H8 − {α1, α2}

4 Some Edge-Cut Sets and their YAFs for General Cases

By Definition 3 we need all edge-cut sets, But it is hard to find all the cut
edge sets. Therefore we use some edge-cut set and reach these YAFs. We work
on n ≥ 4.

Theorem 1 Consider E0 = {α1} and E = E0 ∪ A that A has s edges of the
type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.

Proof. The graph of G− E0 has two components, also

|E0| = 1, ω0 = 2, τ0 = 3(n− 1).

Consider E = E0 ∪ A, that A has s edges of the type e, and i edges of A
incident with C1, that 0 ≤ i ≤ 3, so

|E| = |E0|+ s, ω(G− E) = ω0 + s, τ = τ0 − (s− i),

therefore

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ τ0 − (s− i)

ω0 + s
=
|E0|+ τ0 + i

ω0 + s
≥ |E0|+ τ0

ω0 + s
.

Note. The above relations are commised firmly for E0 = {αn−1}.
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Fig. 8 Graph of G− {α1}

Theorem 2 Consider E0 = {α1, α2} and E = E0 ∪ A that A has s edges of
the type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.

Fig. 9 Graph of G− {α1, α2}

Proof. The graph of G− E0 is in Figure 9.

|E0| = 2, ω(G− E0) = 3, τ(G− E0) = 3(n− 2), Y AF (E0) =
3n− 4

3
.

Let E1 be a set of edges of the type e don’t incident with C1 and/or C2.
Consider E = E0 ∪ A, that A has s edges of the type e and let |A ∩ E1| = i,
(0 ≤ i ≤ s), so

|E| = |E0|+ s, ω(G− E) = ω0 + s, τ(G− E) = τ0 − i.
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Therefore

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ τ0 − i

ω0 + s
≥ |E0|+ τ0

ω0 + s

Note. If E0 = {αn−1, αn−2} then the above relations are established.

Theorem 3 Consider E0 = {αk} and E = E0 ∪ A that A has s edges of the
type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.

Proof. E0 = {αk}, so
|E0| = 1, ω(G− E0) = 2.

Fig. 10 Graph of G− {αk}

Name the components of G− E0 by G1 and G2.

|E(G1)| = 3(n− k), |E(G2)| = 3k.

Also |E(G1)| ≥ |E(G2)| iff n ≥ 2k, therefore if n ≥ 2k so τ0 = τ(G − E0) =
|E(G1)| = 3(n− k) and if n < 2k then τ0 = τ(G− E0) = |E(G2)| = 3k (Note
the function τ0 is continues). So

|E0| = 1, ω0 = 2, τ0 =

{
3(n− k) , n ≥ 2k,
3k , n < 2k.

Consider E = E0 ∪A that A has s edges of the type e, so

|E| = |E0|+ s, ω(G− E) = ω0 + s.
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Assume i edges of A are in E(G1) and j edges of A are in E(G2) (i+ j = s).
Without loss of generality assume |E(G1)| ≥ |E(G2)|, so τ0 = |E(G1)|. G1

translates to G′1 and G2 translates to G′2 after removing E from G, so

|E(G′1)| = |E(G1)| − i = τ0 − i, |E(G′2)| = |E(G2)| − j.

Note |E(G1)| + |E(G2)| + 1 = ε thus |E(G′2)| = 3n − τ0 − j. For reaching
τ(G − E), we see |E(G′1)| ≥ |E(G′2)| iff 2τ0 ≥ 3n − j + i, therefore if 2τ0 ≥
3n− j + i then τ(G− E) = |E(G′1)| = τ0 − i and

Y AF (E) =
|E0|+ τ0 + j

ω0 + s
≥ |E0|+ τ0

ω0 + s
.

and if 2τ0 < 3n− j + i, then τ(G−E) = |E(G′2)| = 3n− τ0 − j, note i ≤ s so
τ0 < 3n− τ0 + i and thus

Y AF (E) =
|E0|+ s+ 3n− τ0 − j

ω0 + s
≥ |E0|+ τ0

ω0 + s
.

Theorem 4 Consider E0 = {α1, αk} (3 ≤ k ≤ n − 2), and E = E0 ∪ A that
A has s edges of the type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.

Fig. 11 Graph of G− {α1, αk}

Proof. Graph of G− {α1, αk} is in Figure 11.

|E0| = 2, ω0 = 3.
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Also |E(G1)| = 3(k − 1) − 1 and |E(G2)| = 3(n − k) and |E(G1)| ≥ |E(G2)|
iff 3n ≤ 6k − 4. Thus if 3n ≤ 6k − 4 then τ0 = |E(G1)| = 3(k − 1) − 1 and if
3n > 6k − 4 then τ0 = |E(G2)| = 3(n− k). So

|E0| = 2, ω0 = 3, τ0 =

{
3(k − 1)− 1 , 3n ≤ 6k − 4
3(n− k) , 3n > 6k − 4

.

Consider E = E0 ∪ A, that A has s edges of the type e. Let E1 be a set of
edges of the form e incident with C1. Without reducing the generality, assume
G1 is the largest component of G − E0, therefore |E(G1)| = τ0 and we have
|E(G1)|+ |E(G2)|+ 5 = ε, so |E(G2)| = 3n− τ0 − 4.
Let |A ∩ E1| = l, |A ∩ E(G1)| = i and |A ∩ E(G2)| = j, so i + j + l = s. G1

is changed to G′1 by deleting i edges from G1 and G2 is changed by deleting j
edges of the from G2, so

|E(G′1)| = |E(G1)| − i, |E(G′2)| = |E(G2)| − j,

|E| = |E0|+ s, ω(G− E) = ω0 + s.

Note |E(G′1)| ≥ |E(G′2) iff 2τ0 ≥ 3n+i−j−4. Therefore if 2τ0 ≥ 3n+i−j−4,
then τ(G− E) = |E(G′1)| = τ0 − i, so

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ τ0 − i

ω0 + s
≥ |E0|+ τ0

ω0 + s
,

and if 2τ0 < 3n+ i− j − 4, then τ(G− E) = |E(G′2)| = 3n− τ0 − 4− j, so

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ 3n− τ0 − 4− j

ω0 + s

because 2τ0 < 3n + i − j − 3 and i ≤ s, we have 2τ0 < 3n + s − j − 4 so
s+ 3n− τ0 − 4− j ≥ τ0, therefore

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.

Note Butane doesn’t have this edge-cut set, so we have this set for n ≥ 5.

Theorem 5 Consider E0 = {αk, αk+1} and E = E0 ∪ A that A has s edges
of the type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.
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Fig. 12 Graph of G− {αk, αk+1}

Proof. The graph of G− E0 is in Figure 12,

|E0| = 2, ω0 = 3.

Also |E(G1)| = 3k and |E(G2)| = 3(n − (k + 1)), so |E(G1)| ≥ |E(G2)| iff
n ≤ 2k+1. If 2k ≥ n−1, then τ0 = 3k and if 2k < n−1, then τ0 = 3(n−(k+1)),
so

|E0| = 2, ω0 = 3, τ0 =

{
3k , 2k ≥ n− 1,
3(n− (k + 1)) , 2k < n− 1.

Assume E = E0∪A, where A contains s edges of the form e. Let E1 be a set of
edges of the type e incident with Ck+1. Also consider |A∩E1| = l (0 ≤ l ≤ 2),
|A∩E(G1)| = i and |A∩E(G2)| = j (i.e. i+j+ l = s). Consider G1 is changed
to G′1 by omitting i edges of the form e, and G2 is changed to G′2 by omitting j
edges of the form e, |E(G′1)| = |E(G1)|−i and |E(G′2)| = |E(G2)|−j. Without
reducing the generality, consider G1 is the largest component of G−E0, thus
τ0 = |E(G1)|. We have |E(G1)| + |E(G2)| + 4 = ε, so |E(G2)| = 3n − τ0 − 3.
Note |E(G′1)| ≥ |E(G′2)| iff 2τ0 ≥ 3n+i−j−3. Therefore if 2τ0 ≥ 3n+i−j−2
then τ = |E(G′1)| = τ0 − i and

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ τ0 − i

ω0 + s
≥ |E0|+ τ0

ω0 + s
.

If 2τ0 < 3n+ i− j − 3 then τ = |E(G′2)| = 3n− τ0 − j − 2 and because i ≤ s
we have s+ 3n− τ0 − 3− j ≥ τ0, and

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ 3n− τ0 − 3− j

ω0 + s
≥ |E0|+ τ0

ω0 + s
.

Theorem 6 Consider E0 = {α1, · · · , αk} (k < n − 1) and E = E0 ∪ A that
A has s edges of the type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.
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Proof. We have

|E0| = k, ω0 = k + 1, τ0 = 3(n− k).

Assume E = E0 ∪ A where A has s edges of the type e. Let E1 be a set of
edges of form e incident with Ci, 1 ≤ i ≤ k, and let E2 the set of edges of form
e don’t incident with Ci, 1 ≤ i ≤ k. If |A ∩ E2| = l (l ≤ 2(n− k) + 1 ≤ s), so
|E| = |E0|+ s, ω = ω0 + s and τ = τ0 − l. Therefore

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ τ0 − l

ω0 + s
≥ |E0|+ τ0

ω0 + s
.

Fig. 13 Graph of G− {α1, · · · , αk}

Theorem 7 Consider E0 = {α1, α2, · · · , αn−1} and E = E0 ∪ A that A has
s edges of the type e, 0 ≤ s ≤ 2n+ 2 , then

Y AF (E) ≥ |E0|+ τ0
ω0 + s

.

Proof. We have

|E0| = n− 1, ω0 = n, τ0 = 3.

Assume E = E0 ∪ A that A contains s edges of the type e. Let l edges of A
incident with C1 or Cn (0 ≤ l ≤ 6), |E| = |E0| + s and ω = ω0 + s. There
are some relations between τ , τ0 and l. Thus τ = τ0 or τ = τ0 − 1; therefore
τ ≤ τ0. So τ + s ≥ τ0, and then

Y AF (E) =
|E|+ τ(G− E)

ω(G− E)
=
|E0|+ s+ τ

ω0 + s
≥ |E0|+ τ0

ω0 + s
.
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Fig. 14 The table of l, τ and τ0

Fig. 15 Graph of G− {α1, · · · , αn}

5 Finding a best upper bound for Edge Tenacity

As we seen, in every cases of E in the previous section, the yield amount of

fraction of E is grater than or equal |E0|+τ0
ω0+s

, (0 ≤ s ≤ 2n + 2). We compare

Y AF (E) by 1
2 for every E and we show Te(CnH2n+2) ≤ n+3

3n+2 .
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Theorem 8 Consider E0 = {αk} (1 ≤ k ≤ n − 1) and E = E0 ∪ A that A
has s edges of the type e (0 ≤ s ≤ 2n+ 2), then

Y AF (E) ≥ 1

2
. (2)

Proof. E0 = {αk}, 1 ≤ k ≤ n− 1. Let E = E0 ∪ A, that A has s edges of the
type e. Consider n ≥ 2k, so for all s, 0 ≤ s ≤ 2n+ 2,

|E0|+ τ0
ω0 + s

≥ 3n− 3k + 1

2n+ 4
,

and because n ≥ 2k, we have 2n > 3k and therefore

6n− 6k + 1

2n+ 4
≥ 1,

thus Y AF (E) > 1
2 .

Now Consider n < 2k, so for all s, 0 ≤ s ≤ 2n+ 2, we have

|E0|+ τ0
ω0 + s

≥ 3k + 1

2n+ 4
,

and because n < 2k, we have n+ 1 < 3k and therefore 6k + 2 > 2n+ 4, thus
Y AF (E) > 1

2 .

Theorem 9 Consider E0 = {α1, αk} (1 ≤ k ≤ n − 1) and E = E0 ∪ A that
A has s edges of the type e (0 ≤ s ≤ 2n+ 2), then

Y AF (E) ≥ 1

2
.

Proof. Consider E = E0 ∪ A that A has s edges of the type e. Assume 3n ≤
6k − 4. For all s, 0 ≤ s ≤ 2n+ 2,

|E0|+ τ0
ω0 + s

≥ 2 + 3(k − 1)− 1

2n+ 5
.

On the other hand 3n ≤ 6k−4, so 2n ≤ 6k−n−4 and n > 5, thus 6k−n−4 ≤
6k − 9, therefore 2n ≤ 6k − 9 and

6k − 4 ≥ 2n+ 5,

so Y AF (E) > 1
2 .

Assume 3n > 6k − 4. For all s, 0 ≤ s ≤ 2n+ 2,

|E0|+ τ0
ω0 + s

≥ 3n− 3k + 2

2n+ 5
,

n ≥ 4, so 4n > 3n+ 3 and 3n+ 3 > 6k − 1, therefore 4n > 6k − 1 and thus

6n− 6k + 4 > 2n+ 5

and then Y AF (E) > 1
2 .
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Theorem 10 Consider E0 = {αk, αk+1} (1 ≤ k ≤ n − 1) and E = E0 ∪ A
that A has s edges of the type e (0 ≤ s ≤ 2n+ 2), then

Y AF (E) ≥ 1

2
.

Proof. Let E = E0 ∪A that A has s edges of the type e. Assume 2k ≥ n− 1,
for all s (0 ≤ s ≤ 2n+ 2),

|E0|+ τ0
ω0 + s

≥ 3k + 2

2n+ 5
.

n > 4, so 3n − 3 > 2n + 1 and also 2k ≥ n − 1, so 6k ≥ 3n − 3, therefore
6k > 2n+ 1, thus

6k + 4 > 2n+ 5,

and then Y AF (E) > 1
2 .

Assume 2k < n− 1 and E = E0 ∪A that A has s edges of the type e. For all
s,

|E0|+ τ0
ω0 + s

≥ 3n− 3k − 1

2n+ 5
,

2k < n− 1 and n > 4, so 6k + 7 < 3n+ 4 < 4n and

6n− 6k − 2 > 2n+ 5,

therefore Y AF (E) > 1
2 .

Theorem 11 Consider E0 = {α1, · · · , αk} and E = E0 ∪ A that A has s
edges of the type e (0 ≤ s ≤ 2n+ 2), then

Y AF (E) ≥ n+ 2

3n+ 2
.

Proof. Consider E0 = {α1, · · · , αk}. Let E = E0 ∪ A, that A has s edges of
the type e,

|E0|+ τ0
ω0 + s

≥ 3n− 2k

2n+ k + 3
,

for all s, 0 ≤ s ≤ 2n+ 2. Let

f(k) :=
3n− 2k

2n+ k + 3

the function f is a decreasing function, so

k < n− 1→ f(k) > f(n− 1)→ 3n− 2k

2n+ k + 3
>

n+ 2

3n+ 2
. (3)
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Theorem 12 Consider E0 = {α1, · · · , αn−1} and E = E0 ∪ A that A has s
edges of the type e (0 ≤ s ≤ 2n+ 2), then

Y AF (E) ≤ 1

2
.

Proof. Consider E0 = {α1, · · · , αn−1}. Let E = E0 ∪A that A has s edges of
the type e. We have

|E0|+ τ0
ω0 + s

≥ n+ 2

3n+ 2
.

Beacause n > 2, thus
n+ 2

3n+ 2
≤ 1

2
. (4)

The below conclusion is the main result of this paper.
Conclusion. As we seen, for any cut-edge set E, except 3 and 4, therefore

Y AF (E) ≥ 1

2
.

Because of relationship between Theorems 11 and 12 we have

n+ 2

3n+ 2
≤ min{1

2
,

3n− 2k

2n+ k + 3
}, k < n− 1.

Therefore by Definition 3,

Te(CnH2n+2) ≤ n+ 3

3n+ 2
.

By the above we had a best upper bound for Edge tenacity of the organic com-
pounds CnH2n+2. May be there is an organic compound by the edge tenacity
equal to the upper bound we had.
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