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Abstract Heuristic optimization provides a robust and efficient approach for
extracting approximate solutions of multiobjective problems because of their
capability to evolve a set of non-dominated solutions distributed along the
Pareto frontier. The convergence rate and suitable diversity of solutions are
of great importance for multi-objective evolutionary algorithms. The focus of
this paper is on a hybrid method combining two heuristic optimization tech-
niques, Invasive Weed Optimization (IWO) and Particle Swarm Optimization
(PSO), to find approximate solutions for multiobjective optimal control prob-
lems (MOCPs). In the proposed method, the process of dispersal has been
modified in the MOIWO. This modification will increase the exploration power
of the weeds and reduces the search space gradually during the iteration pro-
cess. Thus, the convergence rate and diversity of solutions along the Pareto
frontier have been promote. Finally, the ability of the proposed algorithm is
evaluated and compared with conventional NSGA-II and NSIWO algorithms
using three practical MOCPs. The results show that the proposed algorithm
has better performance than others in terms of computing time, convergence
and diversity.
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1 Introduction

Many of engineering problems belong to multiobjective optimal control prob-
lems (MOPcs), which have multiple conflicting objectives to be optimized
simultaneously to achieve a tradeoff, such as design of optimal reactor feeding
rates in (bio)chemical engineering, optimal power management of fuel cells
in electrical engineering, optimal robot paths in mechanical engineering and
optimal rocket trajectories in aerospace engineering [14].

In single-objective optimization, the determination of the optimum among
a set of given solutions is clear. However, in the absence of preference in-
formation, in multi-objective optimization there does not exist a unique or
straightforward way to determine if a solution is better than other [16]. The
notion of optimality most commonly adopted is the one called Pareto opti-
mality [25] which leads to trade-offs among the objectives. Thus, by using this
relation, it is not possible to obtain a single solution, but instead, we produce
a set of them called the Pareto optimal set (the set of Pareto optimal solutions
in the objective space is called Pareto front).

There are two different strategies for generating a set of solutions repre-
senting the entire Pareto-optimal frontier: One-at-a-time strategy, and Simul-
taneous strategy. In the former method, a multi-objective optimizer may be
applied one at a time for finding one single Pareto-optimal solution. Most
classical generating multi-objective optimization methods use such an itera-
tive scalarization scheme of standard procedures, such as weighted-sum, e-
constraint, NC and NBI methods [5,17].

Recently, these methods have been successfully combined with direct opti-
mal control techniques for construction the Pareto frontier of the non-convex
MOCPs. For example, Logist et al. has been proposed an application of NBI
and NNC for the multiple objective optimal control of (bio) chemical processes
[13], and in [14] several scalarization skims for multi-objective optimization,
such as WS, NNC, and NBI have been integrated with fast deterministic direct
optimal control methods.

In the simultaneous approach, multiple Pareto-optimal solutions are found
in a single simulation run, thereby not requiring multiple applications of an op-
timizer. In past two decades several nature-inspired meta-heuristics could show
good performance detect approximate solutions of multi-objective problems,
such as the Multi-Objective Genetic Algorithm (MOGA) [9], Niched Pareto
Genetic Algorithm (NPGA) [8], Vector Evaluated Genetic Algorithm (VEGA)
[28], Strength Pareto evolutionary algorithms (SPEA) [35], SPEA2 [36], Multi-
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Objective Invasive Weed Optimization (MOIWO) [12], Multi-Objective Par-
ticle Swarm Optimization (MOPSO) [4], Non-Dominated Sorting Genetic Al-
gorithm (NSGA) [27] and NSGA-II [7].

These algorithms have several advantages. Some of their advantages are:
(I) the objective functions gradientis not required; (IT) thet are not sensitive
to initial guess of solution and (IIT) they usually do not get stuck in to a local
optimum [19].

Evolutionary algorithms are potentially able to find the entire Pareto so-
lutions set of multiobjective problems and have been also successfully used
to solve MOCPs. For example, Zhang et. al. introduce an iterative multi-
objective particle swarm optimization based control vector parameterization
for the state constrained chemical and biochemical engineering problems [33].
sharker and modak used NSGA-II algorithm to solve two optimal control prob-
lems related to fed-batch bioreactors [26]. Patel and Padhiyar proposed a mod-
ified genetic algorithm using Box Complex method and used it to solve optimal
control problems [22]. Sun et. al. introduce a hybrid improved genetic algo-
rithm (HIGA) for solving dynamic optimization problems [30]. Borzabadi et.
al. used NSGA-IT and MOPSO algorithms to solve two multiobjective optimal
control problems [2].

Due to outstanding abilities of evolutionary algorithms in finding Pareto
solutions of multi-objective problems, in this paper we propose a new approach
based on evolutionary algorithms, named multiobjective hybrid IWO/PSO al-
gorithm which is inspired from IWO and PSO, to find a Pareto optimal pair of
state and control for multiobjective optimal control problems. In proposed ap-
proach, we improve the process of dispersal in order to increase the explorative
power of the weeds and reduce the search space gradually during the iteration
process. Also, this improvement leads to the minimization of the distance of
the Pareto front and the maximization the diversity of the solutions (uniform
distribution).

The rest of the paper is organized as follows. In Section 2, mathematical
formulations of general multi-objective optimal control problem are briefly
introduced. In section 3, two heuristic approaches for solving multiobjective
optimization problems are described. The details of multi objective hybrid
IWO/PSO method with performance metrics are discussed in Section 4. In
Section 5, the ability of this new method is demonstrated with various practical
optimal control problems. Lastly, section 6 outlines the conclusion.
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2 Multipleobjective Optimal Control Problem

A general multiobjective optimal control problem consists of optimizing a vec-
tor of functions is defined as below:

Opt (J(z,u) = (J1(z,u), J2(z,w), ..., Jm(z,0))) (1)
subject to:
i(t) = f(z,u,1), (2)
g(x,u,t) >0, (3)
(w0, x5, t0,5) = 0, (4)
t € [to, ty] (5)

where J; are functions of the state variable z : [to,t¢] — R™, control variable
u € L* and time t. For each individual cost function let’s here consider the
following typical optimal control problem (known as Bolza’s problem):

ty
Ji = ‘p(vatf)—’_/ Li(xﬂuvt)dtv
to

The functions = belong to the Sobolev space W1> while the objective func-
tions are J; : R"2 x RP x [to,t¢] — R. The objective vector is subject to a set
of dynamic constraints with f : R™ x RP X [tg,ts] — R", algebraic constraints
g: R"™ x RP X [to,ts] — R®, and boundary conditions R?*"*2 — R?. The ad-
missible set P C R™ x RP X [to,ty] is defined to be set of all feasible pair state
and control (z,u) that satisfy in Eq.(2-5)

In MOCPs usually objectives in conflict with each other, so it is difficult
to have an admissible pair (z*,u*) that optimizes all the objectives simul-
taneously. Therefore, the concept of Pareto optimality is used. The concept
of optimality in single objective is not directly applicable in multiobjective
optimization problems. For this reason a classification of the solutions is in-
troduced in terms of Pareto optimality, according to the following definitions
[36]. In terms of minimization of objective functions:

Definition 1 (non-dominated and Pareto optimal solutions)

1. Pareto dominance: A admissible pair (z*,u*) is said dominate another
admissible pair (z,u) (denote this relationship (z*,u*) > (z,u)) if the pair
(z*,u*) is no worse than pair (z,u) in all objectives and the pair (z*,u*)
is strictly better than (z,u) in at least one objective [36]. If there are no
solutions which dominate (x*,u*), then it is non-dominated.

2. Pareto optimal: An admissible pair (z*,u*) is Pareto optimal solution of
the MOCP if and only if there is no other admissible pair (z, ) which
dominates (z*,u*).

3. A set of non-dominated admissible pair {(z*,v*) € P|-I(z,u) € P :
(z,u) = (x*,u*)} is said to be a Pareto set. The set of vectors in the ob-
jective space that are image of a Pareto set, i.e. {J(z*,u*) € P|=3(z,u) €

P:(x,u) = (x*,u*)}.
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3 Evolutionary Algorithms

Evolutionary algorithms include various methods, which are also called evolu-
tionary computation methods. Evolutionary algorithms (EA) have been recog-
nized to be particularly suitable to solve multi-objective optimization problems
because they deal simultaneously with a set of possible solutions which allows
an entire set of Pareto-optimal solutions to be evolved in a single run of the
algorithm, instead of having to perform a series of separate runs as in the case
of traditional mathematical programming techniques. Moreover, EAs are less
susceptible to the shape or continuity of the Pareto front [3].

3.1 Invasive weed optimization

Invasive weed optimization (IWO) was developed by Mehrabian and Lucas in
2006 [18]. The IWO algorithm is an adaptive algorithm based on the metaphor
of natural biological evolution of weed colonizing in opportunity spaces for
function optimization. The algorithm is simple but has shown to be effective
in converging to optimal solutions employing basic properties, e.g. seeding,
growth and competition, in a weed colony [34].

In the basic IWO, weeds represent the feasible solutions of problems and

population is the set of all weeds. A population of initial solutions is being
dispread over the D dimensional search space with random positions. These
weeds will eventually grow up and execute steps of the algorithm as described
below.
Reproduction: Each member of the population of plants will produce seeds
based on its fitness, the colony’s fitness and the highest fitness, to simulate
the natural survival of the fitness process. The higher the weed’s fitness, the
more seeds it produces. The formula of weeds producing seeds is

(FZt(Z) - Fitrnin) (Stnax - Smin)

seed(i) = Fitmax — Fitm;

(6)

where, Fit(i) is the fitness of the i-th plant, Sy, is the minimum number
of seeds, Spax is the maximum number of seeds, Fitya.x and Flity;, are the
maximum fitness and the minimum fitness in the colony, respectively.

Spatial dispersal: The generated seeds are randomly distributed over the D
dimensional search space by normally distributed random numbers with a
mean equal to zero, but with a varying variance. This ensures that seeds will be
randomly distributed at the neighborhood of parent weed. However, standard
deviation o of the random function will be reduced from a previously defined
initial value onitiar to a final value ofina; in every generation. In simulations,
a nonlinear alteration has shown satisfactory performance, given as follows

tmax

itmax — it
Oit = (W> (Uinitial - Ufinal) + O final (7)
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where o;; is the standard deviation in the current iteration, it .y is the max-
imum number of iterations and n is the nonlinear modulation index.
Competitive exclusion: After passing some iteration, the number of weeds in
a colony will reach its maximum popmax by fast reproduction. At this time,
each weed is allowed to produce seeds. The produced seeds are then allowed
to spread over the search area. When all seeds have found their position in
the search area, they are ranked together with their parents. Next, weeds with
lower fitness are eliminated to reach the maximum allowable population in a
colony. In this way, weeds and seeds are ranked together and the ones with
better fitness survive and are allowed to replicate. The population control
mechanism is also applied to their offspring to the end of a given run, realizing
competitive exclusion [32] .

3.2 Particle Swarm Optimization

In nature, birds seek food by considering their personal experience and the
knowledge of the other birds in the flock. This idea motivated Kennedy and
Eberhart [10] to propose the Particle swarm optimization (PSO) method. This
method has been successfully applied in many engineering and management
optimization problems because of its simple principle and easy implementa-
tion.

In standard PSO, the velocity and position of particle i in the search space
are calculated based on the following equation:

Ui(t + 1) = wvi(t) +cir (-Ti,best(t) — wi(t)) + Ccoro (xg,best(t) — l‘i(lf)) (8)
xi(t+1) =2;(t) +v;(t+ 1) (9)

where, v;(t+1) is the velocity of particle ¢ in generation t+1, z;(t+1) is the
position of particle ¢ in generation ¢+ 1, x; pest is the current optimal position
of particle ¢, and x4 pes; is current global optimal position. w is an inertia
weight which determines the influence of velocity memory and is employed on
the favor of global or local search [29], r; and 7y are two random numbers
with uniform distribution on the interval [0, 1], and ¢; and ¢y are acceleration
factors, which represent the weights of each particle being pushed towards the
statistical @; pest and x4 pest position, respectively.

3.3 The Multiobjective Hybrid IWO/PSO Algorithm

In this section, we mix the two algorithms and present a hybrid algorithm and
discuss the infrastructure and rationale of the hybrid algorithm. From the two
previous sections it can be concluded that IWO and PSO have two different
approaches for optimization. IWO offers good exploration and diversity, while
PSO is an algorithm with fairly deliberate and to the point movements in each
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iteration and also, it allows individuals to benefit from their previous experi-
ences. The whole procedure for multiobjective hybrid IWO/PSO algorithm is
given as follows.

First discretize the control space and then the state space. Choose an
equidistance partition of the time interval [to,tf] with a step size h = 2] ;to,
and equidistant nodes on the set of control values corresponds to i-th compo-
nent of the control vector function as (w;g, i1, -, Win)-

At the primitive step, the algorithm generates a population of weeds in the
entire search space. So, each weed is represented by a u(t), that represent the
candidate solutions for the optimal control signals.

For each solution vector, u(t), solve the given system of differential equations
that represent the dynamic system to be controlled, for x(t) numerically us-
ing any numerical solver of high accuracy (RK4, for instance) using the given
initial conditions on the state variables.

Based on the generated initialization population, find the value of the ob-
jective function J;(x,u); ¢ = 1,...,m to be minimized for each individual in
the population using any numerical integration formula of high accuracy. Also,
the fitness is calculated for all individuals in the population in this step. Next
the population is sorted based on non-domination into each front. The first
front is completely non-dominant set in the current population and the second
front is dominated by the individuals in the first front only and the front goes
so on. Next, the archive is created based on the order of ranking fronts. If the
number of individuals in the archive is smaller than the population size, the
next front will be taken into account and so on. This procedure is called fast
non-dominated sorting [20].

In the next step, a binary tournament selection is used to select the can-

didate parents from the current solution. Then, the maximum and minimum
weakness (is calculated according to the formula (13)) in w is found. The mem-
ber having minimum weakness value has got its position Tgpes¢ and the i-th
member has its corresponding position Zppest,;. Number of seeds of w is com-
puted corresponding to its weakness. Each member generates seeds depending
on their corresponding weakness value. The number of seeds varies from max-
imum seed S),q, for the minimum weakness member to the minimum seed
Sinin for the maximum weakness member.
For each seed w, the velocity and position is calculated according to (8) and
(9) respectively. Next, randomly distribute generated seeds over the search
space with process of dispersal. Here we improve the process of dispersal in
order to increase the explorative power of the weeds and reduce the search
space gradually during the iteration process so as to further promote the con-
vergence rate and diversity of solutions.

When a weed is near to true Pareto optimal frontier, we reduce the standard
deviation o for it in the current population, so that the seeds will be dispersed
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over a small neighborhood of parent weed. Thus in this process, we alter the
standard deviation for each weed based on its fitness value instead of using
a fixed o for all weeds in each iteration. The process of varying the standard
deviation o; of the i-th weed is explain as follow

03 = O final + (1 - e_Ai)(o-initial - Ufinal) (10)

where A; = minllfill(ZM ( O _ .],3'}(16))2)1/2 and J) represent the fitness

m=1
value of the individual 7 in the sequence and also :;L(k) represent the fitness

value of the i-th individual in the Pareto optimal set, so when A; — 0 then
0; =+ Ofinal- This means that the i-th weed lies close to the Pareto frontier.
The offspring solution set is added to the previous population, and the fronts
are derived through fast non-dominated sorting algorithm for this combined
population. If adding a front increases the number of individuals in the archive
to exceed the initial population size, a truncation operator is applied to the
front based on the crowding distance (CD) and weakness.

For a member of non-dominated set, CD is calculated by finding distance be-
tween two nearest solutions on either side of the member along each of the
objectives [11]. These distances are normalized by dividing them by the differ-
ence between maximum and minimum values of corresponding objectives. For
those members in the non-dominated set, which have maximum or minimum
value for any objective (boundary solution), CD is assigned to have an infinite
value. Let J ,[;] represent the fitness value of the individual ¢ in the sequence.
Then, crowdedness of the individual ¢ in dimension k in that rank can be
expressed as follows

_ J[i-‘rl] . J[i—l}
Dy = Sk Tk (11)
k Jénax . Jlinm

where J#* and J{M" represent the maximum and minimum values in objective
k, respectively. Let say individual ¢ in a Pareto rank has m values for m
objectives according to (7). So, one can simply summarizes the distances to
represent the overall crowdedness, crowding distance, of this individual as

ol =%"cpy, (12)
k=1

where C’D,[CZ] is calculated by (7) and CD is the crowding distance of indi-
vidual i.

The weakness (opposite of fitness) of each individual w is calculated according
to the following formula:

Weakness(w) = rank(w) + 1/CD(w) + 2 (13)

where, rank(w) is the front number and CD(w) is the crowding distance for
w. In this equation, the fitness (opposite of weakness) is proportionate to
the crowding distance, but it is disproportionate to the rank [20]. Thus, the
individuals in the lower fronts and with better density have higher fitness.
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Finally, the individuals with lower fitness are eliminated from the combined
population explained above, and a new population is formed for the next
iteration.

The Pseudo-code for IWO/PSO algorithm is summarized as follows.

3.4 Pseudo-code for MO hybrid IWO/PSO algorithm

initialization step: Discretization

First discretize the control space and then the state space. Choose an equidis-
tance partition of the time interval [0, ;] as h with h = tf;t” , and equidistant
nodes on the set of control values corresponds to i-th component of the control
vector function as (w;g, Ui, -, Win,)-

main steps:

1. Generate Random the population of N individuals, from the time-control
space and numerical solving system of differential equations i.e., random (2n
+ 2) tuples as (i, Uit -+, Uin, Ti0s Til, -, Tin) Where each individual of the
population is a weed (w).

2. Initialize the velocity of each weed to zero.

3. Calculate fitness for each weed in W

4. For each weed w € W

4.1. Assign the rank based on fast non-dominated sorting

4.2. Assign the crowding distance

4.3. Compute the weakness of each weed according to its rank and crowding
distance

5. For iter=1 to maximum number of generation (iter max):

5.1. Use the binary tournament selection to obtain a selected parent popula-
tion (w)

5.2. Find the maximum and minimum weakness in W. The member having
minimum weakness value has got its position xgpes; and the i-th member has
its corresponding position Zppest,i-

5.3. For each weed w € W, compute the number of seeds of w, corresponding
to its weakness

5.4. For each seed w

5.4.1. Calculate the velocity according to (8)

5.4.2. update the position according to (9)

5.5. Randomly distribute the generated seeds over the search space by Eq.(10)
around the parent plant (w)

5.6 Add the generated seeds to the previous solution archive W

57.If ((W|=N > Ppax

5.7.1. Sort the population on W according to the nondominated sorting, and
assign rank and crowding distance to each individual.

5.7.2. Truncate the population of weeds with smaller fitness until N = popaz.
5.8. Next iter
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4 Performance metrics

To evaluate the performances of the multi objective evolutionary algorithms,
many performance metrics have been proposed in the literature [6]. We in this
work choose Generational Distance metric (y) to represent convergence to true
Pareto frontier and metric A to represent diversity among the non-dominated
solutions. They are defined as the follows, respectively:

|Q| P\1/p

where @) represents solution set having || members. we use p=2 and d; is
minimum distance between the member in solution set and nearest member is
true Pareto set, which is defined as.

M
di =min | S () — a2 (15)
m=1

Here M represents number of objectives, ¢ and k represent member index in
solution set and true Pareto set respectively.

A e+ di+ T2 (di —d))
dy +di+(1Q] — 1)d

(16)

where d is the average of all distances d;, and d ¢ and d; are the Euclidean
distance between the extreme solutions in true Pareto optimal frontier and
the boundary solutions of the obtained non-dominated set. The smaller their
values are, the better performance the algorithm shows.

5 Numerical Results

In this section, using practical examples the MO hybrid IWO/PSO method
compared with NSIWO and NSGA II methods. Since the selected problems
does not have known true Pareto frontier, an expected Pareto frontier is gen-
erated by running EA for large number of generations. NSIWO and NSGA-IT
are run for 1000 generations with each 500 population size. The final pop-
ulations of both runs are combined and the obtained Pareto frontier of the
combined population is considered as the expected Pareto frontier for optimal
control problems. We use the piecewise constant functions for solving multiob-
jective optimal control problem using control vector parameterization (CVP)
approach. The simulation studies are carried out in MATLAB environment,
Windows 7 based computer with 3.4 GHz i7 CPU and 4 GB RAM specifica-
tions. Table. 1 shows the control parameter values for NSGA-II, NSIWO and
MO hybrid IWO/PSO algorithms.
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Table 1 The parameters of NSGA II, NSIWO and MO hybrid IWO/PSO for problems

Parameter NSGAII NSIWO MO hybrid IWO/PSO
N 100 100 100
Itarax 150 150 150
P. (Crossover Probability) 0.8 - -
u (mutation rate) 0.3 - -
Smaz - 3 3
Smin 1 1
Tinitial 0.1 0.1
O final 0.01 0.01
n 3 3
c1 - 2
c2 — 2
Wmazx - 0.9
Wmin - 0.4

5.1 Home Heating System

The first MOCP concerns the home heating system involve a heat pump cou-
pled to floor heating system with two conflicting energy and thermal comfort
objectives. A dynamic model is as follows [1]:

dry —KWR I KWR I U
= T L2

dt  pwCpwVn pwCpw Vi pwCpw Vi’
dzy  —kwr KWR+KGx d

dt KGQTG ! Kagra 2 TG

where the time t [s] is the independent variable. The states x1[C] and x2[C],
denote the temperature of the water returning from the heating and the room
temperature, respectively. The control u[W] is the heat supplied from the heat
pump to the floor, while the outside temperature d[C] induces a disturbance.
Here, pw[kg/m3], cow[J/kgK] and Vi[m?] are the density, the specific heat
and the volume of the water in the floor heating system. kyw r[W/K] and k¢
[W/K] are the thermal conductivities between respectively, the water and the
room, and the room and the environment, while 7¢[s] indicates the thermal
time constant of the room.

Initially, the water and room temperature are both at 19.5C. The objective is
to minimize the energy input over an entire day

ty=24h u(t)
J1 = dt
! /0 Pmax ,

while maximizing the thermal comfort, i.e., remaining as close as possible to
a desired value z2 .5 = 20°C

tp=24h
Jo = / (z2 — T2 e p)?dt,
0
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Table 2 Values of the parameters

Parameter Value Unit
Vi 1.28 m3
KWR 1160 (W/K]
e 260 (W/K]
TG 240 s

Despite, a disturbance is raised from the outside temperature:
d(t) = 2.5+ 7.5sin(2nt/t; — 7/2),
However, the heating power of the heat pump is limited to:
0 < u(t) < Ppax = 15000,

The parameter values are given in the Table 2.
Figure 1 depicts the resulting trade-off between thermal comfort and energy

wiot

True Pareto front
6% + NSO H

NSGA
+  WOVPS0

J2: Thermal comfort objective

L L s i i
0 05 1 15 2 25 3 35 4
J1: Energy objective w0

Fig. 1 Pareto frontier at the end of 150 generations

objectives at the end of 150 generations by all the three algorithms NSGA II,
NSIWO and MO hybrid IWO/PSO. As the figure show, when the energy in-
put increases from 0 to 3.7 the thermal comfort objective gradually decreases
from 16 to 0.47 (i.e., improves the comfort). As the figure shows, there is no
significant difference among the three strategies in respect to the construct of
Pareto frontier. But Table 3 clearly illustrates that the measure values of ~
and A reflect MO hybrid IWO/PSO has resulted in better convergence rate
and diversity when compared to NSIWO and NSGA-II. It is noteworthy that
all the algorithms are measured by 10 times so as to avoid the randomness in
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Table 3 Average CPU time, v and A measures at the end of 150 generations using different
algorithms

NSGA II NSIWO IWO/PSO

CPU time 50 38 22
convergence rate vy 0.050 0.046 0.038
Diversity A 0.443 0.334 0.321

18000

14000

12000

10000+

8000

BO00 -

Heating power (¥¥)

4000

2000

Tirneth)

Fig. 2 Optimal control profile for home heating system

the experiment, and their averages are taken as results.

We show the control trajectory for point A on the Pareto front in Fig. 2
corresponding to the utopia point. The utopia point, A, is selected such that it
has the minimum Euclidean distance from the reference point. The reference
point is a point corresponding to minimum values of the thermal comfort and
energy input. The profile consists of two parts. In the first part, the heating
uses its full potential in order to counteract the cold of the night. In the second
part, it decrease throughout the day since the environment temperature is
higher.

5.2 Goddard’s rocket problem

The Goddard’s rocket problem is to find an optimal ascent trajectory from a
flat celestial body with no atmosphere to a prescribed altitude. The control
variable is the thrust angle and both gravity and thrust accelerations are
constant. The final altitude is assigned and the final vertical component of the
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velocity has to be zero. A dynamic model is as follows [31]:
T = Uy
Uz = A COSU
Y =uy

Vy = —g +asinu

where g is the gravity acceleration, a the thrust acceleration, z and y are the
components of the position vector, v, and v, the components of the velocity
vector and u the control. The dynamics is integrated from time t = 0 to
time ¢t = ty. The objective is to minimize the mission time J; = t;, while
maximizing the horizontal velocity Jo = v, (tf). Thus, the objective functions
are defined as

minthu[t]l, JQ]T = [tf, J2 = 7U1(tf)]T

The initial conditions are [z(0) v;(0) y(0) v,(0)] = [0 0 0 0] and the terminal
conditions are [y(t;) wvy(ty)] = [h 0]. The parameters g, a and h were re-
spectively set to 1.6 x 1072, 4 x 1072 and 10. The control angle was bounded
between —7 and 75, while total mission time was bounded between 100 and
250.

Figure 3 depicts the resulting trade-off between two objectives at the end of
150 generations by all the three algorithms. The metric average and diversity
values at the end of 150 generations are shown at Table 5. It clearly illustrates
that the measure values of v and A reflect MO hybrid IWO/PSO has better
performance when compared to NSIWO and NSGA-II.

True Pareto front
01 +  NSWWO I
0o NSGA I
T +  WO/PSO I
03t
04k
:{ 05}

Bl
o7t
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0ol

q . .

100 150 200 280
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Fig. 3 Pareto frontier at the end of 150 generations
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Table 4 Average CPU time, v and A measures at the end of 150 generations using different
algorithms

NSGA II NSIWO IWO/PSO

CPU time 44 39 37
convergence rate vy 0.041 0.034 0.030
Diversity A 0.443 0.411 0.392

The time history of the control and trajectory for utopia point is plotted
in figures 4 and 5.

u[rad]

1 1 1
1] 50 100 150 200 280

Fig. 4 Time history of the control corresponding to the selected point on the Pareto front

5.3 Fed batch bio-reactor with three objective

A model for the production of secreted protein in fed-batch bio-reactor was re-
ported by Park and Fred Ramirez [24], which is also studied for three objective
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Fig. 5 Trajectory corresponding to the selected point on the Pareto front

dynamic optimization application [23].
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where the time ¢[s] is the independent variable. The states variables are 21 [g/L],
the secreted protein concentration, xs[g/L], the total protein concentration,
x3[—], the culture cell density, x4[g/L], the substrate concentration and z5[L]
the hold-up volume. The control u[L/h] is the substrate volumetric feed rate
and the Parameter S[g/L] is substrate feed concentration.

The initial conditions are X (0) = [0 0 1 5 1]7. Substrate feed concentration is
S = 20 with bounds on feed rate as 0 < u < 2.5. Three objectives, namely the
productivity, yield and fed-batchtime have been considered in this subsection.
The productivity, J; is defined as the ratio of the end point product concen-
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tration, z1(¢) and the total time of bio-reactor operation,

The yield, Js is defined as the ratio of the total amount of product formed,
x1(ty)za(ty) and the amount of substrate added in the reactor,

P(ty)za(ty)
[37 u(t)Sdt

Finally, the total fed-batch time, ¢y is the third objective,
J3 = tf.

In this problem, the upper bound on the reactor volume is kept as 10 L while
that on the volumetric flow rate of the substrate is 2.5 L/h. The fed-batch
time, t; has lower and upper limit of 10 and 30 h, respectively.

The resulting 3-dimensional Pareto frontier has been shown in Fig. 6. We
use population size of 150 for this case to capture the Pareto frontier. The
convergence metric and diversity for all three algorithms are shown in Table
6, it clearly demonstrate that the MO hybrid IWO/PSO is more efficient
than the other algorithms. Fig. 7 is shown the corresponding optimal control
trajectory profile for the substrate volumetric feed rate.

Table 5 Average CPU time, v and A measures at the end of 150 generations using different
algorithms

NSGAII NSIWO IWO/PSO

CPU time 76 58 47
convergence rate -y 0.098 0.087 0.082
Diversity A 0.846 0.754 0.689

Table 7 shows the results obtained from the implementation of the algo-
rithms by considering the v = 0.04 as the terminal condition of the algorithm.
It is clearly seen that the MO hybrid IWO/PSO algorithm needs less number
of generations and also less computational time compared to NSGA-II and
NSIWO algorithms.

6 Conclusion

In this paper, the IWO and PSO algorithms are combined in order to design
a new hybrid method in which some parameters of MOIWO have modified
in order to reduce some shortcomings and find the more suitable solutions for
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Fig. 7 Optimal control profile for substrate volumetric feed rate

Table 6 Average CPU time and generation number using different algorithms

Example  Generation No CPU time
IWO/PSO NSIWO NSGA-II IWO/PSO NSIWO NSGA-II
6.1 140 160 171 19 42 50
6.2 180 195 202 48 59 68
6.3 205 220 218 57 72 71

multi objective optimal control problems. In the proposed method, the process
of dispersal has been modified. This modification will increase the explorative
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power of the weeds and reduces the search space gradually during the itera-
tion process. Moreover, to improve the convergence of MO hybrid IWO/PSO,
the crowding distance is used to calculate the fitness value of these solutions.
The efficiency of the proposed algorithm in finding the entire Pareto optimal
frontier is illustrated by solving several engineering examples involving bi- and
three-objective MOCPs.

The numerical results show that the proposed algorithm has a better conver-
gence rate, dispersal and less computational time. Once, the convergence rate
~v = 0.04 is used instead of 150 generations as the terminal condition of the
algorithm. The results illustrated that the MO hybrid IWO/PSO algorithm
converges to this value in less number of generations and less CPU time.
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