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Derivations on Dual Triangular Banach Algebras
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Abstract Ideal Connes-amenability of dual Banach algebras was investigated
in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied
weak∗-continuous derivations from dual Banach algebras into their weak∗-
closed two- sided ideals. This work considers weak∗-continuous derivations of
dual triangular Banach algebras into their weak∗-closed two- sided ideals . We
investigate when weak∗-continuous derivations from these algebras into their
weak∗-closed ideals are inner?
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1 Introduction

Let A be a Banach algebra and X be a Banach A-bimodule. Then a linear
map D : A −→ X is a derivation if

D(ab) = a ·D(b) +D(a) · b,

for every a, b ∈ A. Let x ∈ X, and set δx(a) = a · x − x · a for every a ∈ A.
Then δx is a derivation, these derivations are inner derivations. The space of
continuous derivations from A intoX is denoted by Z1(A,X) and the subspace
consisting of the inner derivations is N 1(A,X), the first cohomology group of
A with coefficients in X is H1(A,X) = Z1(A,X)/N 1(A,X).
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Let X∗ be the dual Banach space of X. Then X∗ is also a Banach A-
bimodule by the following actions

⟨x, a · f⟩ = ⟨x · a, f⟩, and ⟨x, f · a⟩ = ⟨a · x, f⟩,

for every a ∈ A, x ∈ X and f ∈ X∗. The Banach algebra A is amenable
if H1(A,X∗) = {0} for each Banach A-bimodule X. Amenability of Banach
algebras was introduced by Johnson in [11], where it is proved that the group
algebra L1(G) of a locally compact group G is amenable if and only if G is
an amenable group. Studying on amenability of C∗-algebras led to the new
definition namely Connes-amenability. This notion defined on dual Banach
algebras [13]. Let A be a Banach algebra. A Banach A-bimodule X is called
dual if there is a closed submodule X∗ of X∗ such that X = (X∗)

∗ (X∗ is
called the predual of X). A Banach algebra A is called dual if it is dual as a
Banach A-bimodule.

Let A be a dual Banach algebra. A dual Banach A-bimodule X is called
normal, if for every x ∈ X, the maps

A −→ X, a 7→
{
a · x
x · a

are weak∗-continuous (w∗-continuous). Dual Banach algebraA is called Connes-
amenable, if for every dual BanachA-bimoduleX, every w∗-continuous deriva-
tion D : A −→ X is inner, or equivalently, H1

w∗(A, X) = {0} [13]. Let I be a
w∗-closed two sided ideal of A if H1

w∗(A, I) = {0} then A is called I-connes
amenable. If A is I-connes amenable for every w∗-closed two sided ideal I of
A then A is called ideally connes amenable [17]. Weak amenability of module
extensions of Banach algebras studied by Zhang in [15], Forrest and Mar-
coux studied derivation of triangular Banach algebras in [7]. First Hochschild
cohomology group of triangular Banach algebras studied in [8,?]. Connes-
amenability of dual of module extensions of Banach algebras investigated in
[5].

In [18] dual triangular Banach algebras were introduced and investigated
w∗-continuous derivations from these algebras into themselves.

In this paper we study weak∗-continuous derivations of dual triangular
Banach algebras into their weak∗-closed ideals. In a simillar manner of ideal
Connes-amenability of dual Banach algebra that is defined in [17], we study
some notes on connes- amenability of dual triangular Banach algebras with
respect to their w∗-closed ideals.

2 Connes-amenability of module extensions of Banach algebras

Let A be a Banach algebra and X be a Banach A-bimodule. The Banach
algebra A⊕∞ X is defined in [5] with the algebra product,

(a, x)(b, y) = (ab, ay + xb)
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and with the norm,

∥(a, x)∥ = max{∥x∥, ∥a∥} (a ∈ A, x ∈ X).

Theorem 1 [18] A ⊕∞ X is Connes-amenable if and only if A is Connes-
amenable and X = 0.

Theorem 2 [18] Let A and B be two dual Banach algebras and M be a dual
Banach space that is a left A-module and a right B-module. Then

T =

[
A M

B

]
= A⊕∞ M⊕∞ B,

with the sum and product being giving by the usual 2×2 matrix operations and
internal module actions is an algebra. Furthermore, by the following norm is
a Banach algebra:

∥
[
a m

b

]
∥ = ∥(a,m, b)∥ = max{∥a∥A, ∥m∥M, ∥b∥B}.

Let X is a normal Banach T -bimodule, it is also acted on A,B and M
from the left and from the right via the following actions:

x · (a,m, b) = x · a+ x ·m+ x · b, (a,m, b) · x = a · x+m · x+ b · x,

for every a ∈ A, m ∈ M and b ∈ B. If A and B are unital (eA and eB,

respectively) then T is unital with identity (eA, 0, eB) =

[
eA 0

eB

]
. Therefore,

X become a unital T -bimodule and we have

X = eA ·X · eA + eA ·X · eB + eB ·X · eA + eB ·X · eB
+ eA ·X · (1− eA)(1− eB) + eB ·X · (1− eA)(1− eB)

+ (1− eA)(1− eB) ·X · eA + (1− eA)(1− eB) ·X · eB (1)

+ (1− eA)(1− eB) ·X · (1− eA)(1− eB).

Note that action on the left on (1−eA)(1−eB)·X ·eA, (1−eA)(1−eB)·X ·eB
and (1− eA)(1− eB) ·X · (1− eA)(1− eB) is zero and action on the right on
eA · X · (1 − eA)(1 − eB), eB · X · (1 − eA)(1 − eB) and (1 − eA)(1 − eB) ·
X · (1 − eA)(1 − eB) is zero. We use these notations in this paper: XAA =
eA · X · eA, XBB = eB · X · eB, XAB = eA · X · eB, and XBA = eB · X · eA.
If replace T instead of X, we have XAA = A, XBB = B, XAB = M, and
XBA = 0.

Suppose that IA and IB are w∗-closed two sided ideals of A and B respec-
tively, and let Y be a dual A−B-submodule of M such that IAM ∪MIB ⊂ Y ,

then It is easy to show that IT =

[
IA Y

IB

]
is a w∗-closed two sided ideal in

T . If replace IT instead of X, we have XAA = IA, XBB = IB, XAB = Y , and
XBA = 0.
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Lemma 1 Let T be a dual triangular Banach algebra. IT =

[
IA 0

IB

]
is a

normal dual Banach T -bimodule. If DA : A −→ IA and DB : B −→ IB are
w∗-continuous derivations, then DAB : T −→ IT defined by[

a m
b

]
7−→ DA(a) +DB(b)

is a w∗-continuous derivation. Furthermore, DAB is inner if and only if DA
and DB are inner.

Proof. Clearly, DAB is a w∗-continuous derivation. Assume that DA and DB
are inner. Therefore there exist x ∈ IA and y ∈ IB such thatDA(a) = a·x−x·a
and DB(b) = b · y − y · b for every a ∈ A and b ∈ B. These lead to

D(

[
a m

b

]
) = DA(a) +DB(b) = (a · x− x · a) + (b · y − y · b)

= (a · x+m · x+ b · x− x · a− x ·m− x · b)
+(a · y +m · y + b · y − y · a− y ·m− y · b)
= (a,m, b) · (x+ y)− (x+ y) · (a,m, b)

=

[
a m

b

]
· (x+ y)− (x+ y) ·

[
a m

b

]
.

Hence, DAB ∈ Nw∗(T , IT ). Converse is hold by the same method.

Lemma 2 Let T be a dual triangular Banach algebra, and IT =

[
IA Y

IB

]
If

D : T −→ IT is a w∗-continuous derivation, then there exist w∗-continuous
derivations DA : A −→ IA, DB : B −→ IB and there is a w∗-continuous
mapping θ : M −→ Y such that

1. θ(a ·m) = a · θ(m) +DA(a) ·m,
2. θ(m · b) = θ(m) · b+m ·DB(b),

for every

[
a m

b

]
∈ T . Moreover, if D is inner then DA and DB are inner.

Proof. Define DA : A −→ IA by

DA(a) = eA ·D(

[
a 0
0

]
) · eA,

and DB : B −→ IB by

DB(b) = eB ·D(

[
0 0
b

]
) · eB,

for every a ∈ A and b ∈ B. Clearly, DA and DB are w∗-continuous derivations.
Consider the mapping θ : M −→ Y via

θ(m) = eA ·D(

[
0 m
0

]
) · eB,



Derivations on Dual Triangular Banach Algebras 35

for every m ∈ M. By easy calculation one can show that θ satisfies on stated
conditions.

Theorem 3 Let T be a dual triangular Banach algebra and IT =

[
IA 0

IB

]
is

a w∗-closed two sided ideal in T . Then

H1
w∗(T , IT ) ≃ H1

w∗(A, IA)⊕H1
w∗(B, IB). (2)

Proof. It is obvious by ([18] theorem 2.7 )

Corollary 1 Let T be a dual triangular Banach algebra. Then by above The-
orem the following result immediately holds.

(i) H1
w∗(T , IA) ≃ H1

w∗(A, IA).
(ii) H1

w∗(T , IB) ≃ H1
w∗(B, IB).

Example 1 Let IT =

[
A 0

B

]
where A is a Von-Neumann algebra. It is known

thatA is ideally connes amenable[17]. Then by applying Corollary 1,H1
w∗(T , IA) =

0 for every w⋆-closed two sided ideal IAin A similarly if B is a Von-Neumann
algebra then H1

w∗(T , IB) = 0 for every w⋆-closed two sided ideal IBin B.

Lemma 3 ([18]) Let A and B be dual Banach algebras. Then A ⊕∞ B is a
dual Banach algebra with predual A∗ ⊕1 B∗ and following product and norm:

(a1, b1)(a2, b2) = (a1a2, b1b2), ∥(a, b)∥ = max{∥a∥A, ∥b∥B}.

Corollary 2 ([18]) Let A and B be dual Banach algebras. Then A ⊕∞ B is
Connes-amenable if and only if A and B are Connes-amenable.

Theorem 4 ([18]) Let T be a dual triangular Banach algebra. Then T is
Connes-amenable if and only if A and B are Connes-amenable and M = 0.

Now, this question arise that for triangular dual Banach algebra T , when
H1

w∗(T , IT ) = {0}? From now on, suppose that A and B are dual Banach
algebras and M is a dual and normal Banach left A-module and is a dual
and normal Banach right B-module, and finally, T is a dual triangular Banach
algebra defined as before.

We start with the following Lemma that its proof is straightforward (see
Proposition 2.1 of [7] and Lemma 2).

Lemma 4 Let T be a dual triangular Banach algebra. IT =

[
IA Y

IB

]
an

ideal in T and D : T −→ IT be a w∗-continuous derivation. Then there are
w∗-continuous derivation DA : A −→ IA, DB : B −→ IB, mD ∈ Y and
w∗-continuous linear mapping θ : M −→ Y such that:

(i) D(

[
eA 0

0

]
) =

[
0 mD

0

]
.
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(ii) D(

[
a 0
0

]
) =

[
DA(a) a ·mD

0

]
.

(iii) D(

[
0 0
eB

]
) =

[
0 −mD

0

]
.

(iv) D(

[
0 0
b

]
) =

[
0 −mD · b

DB(b)

]
.

(v) D(

[
0 m
0

]
) =

[
0 θ(m)

0

]
.

(vi) θ(a ·m) = a · θ(m) +DA(a) ·m.
(vii) θ(m · b) = θ(m) · b+m ·DB(b).

Conversely, if DA : A −→ IA and DB : B −→ IB are w∗-continuous deriva-
tions and θ : M −→ Y is a linear w∗-continuous map that satisfies in condi-
tions (vi) and (vii), then D : T −→ IT defined by

D(

[
a m

b

]
) =

[
DA(a) θ(m)

DB(b)

]
,

is a w∗-continuous derivation.

Definition 1 Let A ,B ,M, IA, IB, Y be as before

(i) For any a ∈ IA and b ∈ IB, we say the w∗-continuous linear mapping
θa,b : M −→ Y is a w∗-Rosenblum operator on M with coefficients in Y if
θa,b(m) = a ·m−m · b, for every m ∈ M.

(ii) We say the w∗-continuous linear mapping θ : M −→ Y is a w∗-generalized
Rosenblum operator if there are w∗-continuous derivations DA : A −→ IA
and DB : B −→ IB such that

θ(a ·m · b) = DA(a) ·m · b+ a · θ(m) · b+ a ·m ·DB(b),

for every a ∈ A, b ∈ B and m ∈ M.
(iii) We shall denote the centralizer of A in IA as ZA(IA) = {x ∈ IA : x.a =

a.x ∀ a ∈ A} and the centralizer of B in IB as ZB(IB) = {z ∈ IB : z.b =
b.z ∀ b ∈ B}. We say θa,b is a w∗-central Rosenblum operator on M with
coefficients in Y if a ∈ ZA(IA) and b ∈ ZB(IB). We denote the space of all

w∗-central Rosenblum operators by ZRA,B
w∗ (M, Y ).

(iv) We denote the space of all w∗-continuous left A-module morphisms and
w∗-continuous right B-module morphisms on M by

HomA,B
w∗ (M, Y ) = {φ : M −→ Y ;φ(a.m.b) = a.φ(m).b ∀ a ∈ A,m ∈ M, b ∈ B}

, if A = B, we write HomA
w∗(M, Y ).

Lemma 5 [7, Lemma 2.6, 2.7] Let T be a dual triangular Banach algebra.
Then

(i) ZRA,B
w∗ (M, Y ) ⊆ HomA,B

w∗ (M, Y ).
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(ii) Let φ ∈ HomA,B
w∗ (M, Y ). Then Dφ : T −→ IT defined by

Dφ

([
a m

b

])
=

[
0 φ(m)

0

]
is a w∗-continuous derivation. Moreover, Dφ is an inner derivation if
and only if there exist x ∈ ZA(IA), y ∈ ZB(IB) such that φ = τx,y ∈
ZRA,B

w∗ (M, Y ).

Proof. (i) Let τx,y ∈ ZRA,B
w∗ (M, Y ). Then

τx,z(a,m, b) = xamb− ambz

= axmb− amzb

= a(xm−mz)b

= aτx,z(m)b.

(ii) The first statement follows immediately from Lemma 4 when DA = DB =
0.
Assume that φ = τx,z where x ∈ ZA(IA), z ∈ ZB(IB). Then

δx 0
z


([

a m
b

])
=

[
x 0
z

] [
a m

b

]
−
[
a m

b

] [
x 0
z

]

=

[
xa− ax xm−mz

zb− bz

]
=

[
0 xm−mz

0

]
=

[
0 φ(m)

0

]
= δφ

([
a m

b

])
.

Hence δφ is inner. Conversely, assume that δφ is inner. Then there exists[
a m

b

]
∈ IT such that δφ = δx y

z

. However

δx y
z


([

a m
b

])
=

[
x y
z

] [
a m

b

]
−

[
a m

b

] [
x y
z

]

=

[
xa− ax xm+ yb− ay −mz

zb− bz

]

If δφ = δx y
z

, then xa − ax = 0 for all a ∈ A and zb − bz = 0 for

all b ∈ B. In particular, x ∈ ZA(IA), z ∈ ZB(IB). Moreover, we have
φ(m) = xm+ yb− ay −mz.
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Since φ ∈ HomA,B
w∗ (M, Y ), it follows that yb − ay = 0. Hence φ(m) =

xm−mz = τx,z(m).

In particular, φ ∈ ZRA,B
w∗ (M, Y ).

Proposition 1 [7, Theorem 2.8] Let T be a dual triangular Banach algebra.
If H1

w∗(A, IA) = 0 and H1
w∗(B, IB) = 0, then

H1
w∗(T , IT ) ∼=

HomA,B
w∗ (M, Y )

ZRA,B
w∗ (M, Y )

.

Proof. Let Φ : HomA,B
w∗ (M, Y ) −→ H1

w∗(T , IT ) defined by: Φ(φ) = δφ where
δφ represents equivalence class of δφ inH1

w∗(T , IT ). Clearly Φ is linear. We first
show that Φ is surjective. Let D : T −→ IT be a w∗-continuous derivation. Let
DA, DB, θ, mD be as in Lemma 4. Since H1

w∗(A, IA) = 0 and H1
w∗(B, IB) = 0

we can find x ∈ IA, z ∈ IB such that DA = δx and DB = δz. Define D0 :
T −→ IT by

D0(

[
a m

b

]
=

[
δx(a) Tx,z(m) + (a.mD −mD.b)

δz(b)

]
,

Then D0 is the inner derivation induced by T =

[
x −mD

z

]
and as such D0 is

clearly w∗-continuous. Further more ifD1 = D−D0 thenD1 is a w
∗-continuous

derivation and due to Lemma 4

D1(

[
a m

b

]
=

[
δx(a) θ(m) + (a.mD −mD.b)

δz(b)

]
−
[
δx(a) Tx,z(m) + (a.mD −mD.b)

δz(b)

]
=

[
0 θ(m)− Tx,z(m)

0

]
=

[
0 T1(m)

0

]
where T1 = θ − Tx,z.
It is easy to see that T1 ∈ HomA,B

w∗ (M, Y ). Finally D = D1 = Φ(T1), and so Φ
is surjective. We have shown that

H1
w∗(T , IT ) ∼=

HomA,B
w∗ (M, Y )

KerΦ
.

However φ ∈ KerΦ if and only if δφ is inner. By lemma5KerΦ = ZRA,B
w∗ (M, Y )

Let A be a unital dual Banach algebra and consider T =

[
A A

A

]
and

IT =

[
IA IA

IA

]
then in light of Lemma 4, if DA : A −→ IA is a w∗-continuous

derivation then D : T −→ IT defined by

D(

[
a m

b

]
=

[
DA(a) DA(m)

DA(b)

]
,
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is a w∗-continuous derivation. Moreover, D is inner if and only if DA is inner.
It follows immediately that there exists a linear isomorphism from H1

w∗(A, IA)
onto a subspace H1

w∗(T , IT ) [7, Corllary 3.2]. Hence if H1
w∗(T , IT ) = 0 then

H1
w∗(A, IA) = 0. Therefore we can write the following result that its proof is

similar to proof of Proposition 3.3 of [7] but replace identity map id : A −→ A
by natural projection map from A onto IA which is clearly in HomA

w∗(A, IA).

Proposition 2 Let A be a dual Banach algebra (non-unital) and T =

[
A A

A

]
be a dual triangular Banach algebra and IT =

[
IA IA

IA

]
. If H1

w∗(T , IT ) = 0

then H1
w∗(A, IA) = 0 and A is unital.

Proposition 3 Let A be a unital dual Banach algebra and T , IT be the above
defined dual triangular Banach algebras, then H1

w∗(A, IA) = 0 if and only if
H1

w∗(T , IT ) = 0.

Proof. Lemma 4.3 of [8] leads to HomA
w∗(A, IA) ≃ ZRA

w∗(A, IA) and Proposi-
tion 1 implies that H1

w∗(T , IT ) = 0. Proposition 2 implies that the converse
assertion also holds true.

Example 2 Let A be a Von-Neumann algebra or A = B(G), Fourier Stieltjes
algebra of G where G is a locally compact amenable group, hence A is a unital

dual Banach algebra, let T =

[
A A

A

]
and IT =

[
IA IA

IA

]
. Then in light of

ideal Connes-amenability A [17] and Proposition 3, we have H1
w∗(T , IT ) = 0.
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