Derivations on Dual Triangular Banach Algebras

Ahmad Minapoor*

Received: 24 November 2018 / Accepted: 15 September 2019

Abstract Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak*-continuous derivations from dual Banach algebras into their weak*closed two- sided ideals. This work considers weak*-continuous derivations of dual triangular Banach algebras into their weak*-closed two- sided ideals . We investigate when weak*-continuous derivations from these algebras into their weak*-closed ideals are inner?

Keywords Connes-amenable \cdot Derivation \cdot triangular Banach algebra

Mathematics Subject Classification (2010) 46H25 · 46H20 · 46H35

1 Introduction

Let A be a Banach algebra and X be a Banach A-bimodule. Then a linear map $D: A \longrightarrow X$ is a derivation if

$$D(ab) = a \cdot D(b) + D(a) \cdot b,$$

for every $a, b \in A$. Let $x \in X$, and set $\delta_x(a) = a \cdot x - x \cdot a$ for every $a \in A$. Then δ_x is a derivation, these derivations are inner derivations. The space of continuous derivations from A into X is denoted by $\mathcal{Z}^1(A, X)$ and the subspace consisting of the inner derivations is $\mathcal{N}^1(A, X)$, the first cohomology group of A with coefficients in X is $\mathcal{H}^1(A, X) = \mathcal{Z}^1(A, X)/\mathcal{N}^1(A, X)$.

*Corresponding author

Ahmad Minapoor Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran. Tel.: +98-66-42468320 Fax: +98-66-42468320 E-mail: shp_np@yahoo.com

^{© 2019} Damghan University. All rights reserved. http://gadm.du.ac.ir/

Let X^* be the dual Banach space of X. Then X^* is also a Banach Abimodule by the following actions

$$\langle x, a \cdot f \rangle = \langle x \cdot a, f \rangle$$
, and $\langle x, f \cdot a \rangle = \langle a \cdot x, f \rangle$,

for every $a \in A, x \in X$ and $f \in X^*$. The Banach algebra A is amenable if $\mathcal{H}^1(A, X^*) = \{0\}$ for each Banach A-bimodule X. Amenability of Banach algebras was introduced by Johnson in [11], where it is proved that the group algebra $L^1(G)$ of a locally compact group G is amenable if and only if G is an amenable group. Studying on amenability of C^* -algebras led to the new definition namely Connes-amenability. This notion defined on dual Banach algebras [13]. Let \mathcal{A} be a Banach algebra. A Banach \mathcal{A} -bimodule X is called dual if there is a closed submodule X_* of X^* such that $X = (X_*)^*$ (X_* is called the predual of X). A Banach algebra \mathcal{A} is called dual if it is dual as a Banach \mathcal{A} -bimodule.

Let \mathcal{A} be a dual Banach algebra. A dual Banach \mathcal{A} -bimodule X is called normal, if for every $x \in X$, the maps

$$\mathcal{A} \longrightarrow X, \ a \mapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases}$$

are $weak^*$ -continuous (w^* -continuous). Dual Banach algebra \mathcal{A} is called Connesamenable, if for every dual Banach \mathcal{A} -bimodule X, every w^* -continuous derivation $D : \mathcal{A} \longrightarrow X$ is inner, or equivalently, $\mathcal{H}^1_{w^*}(\mathcal{A}, X) = \{0\}$ [13]. Let I be a w^* -closed two sided ideal of \mathcal{A} if $\mathcal{H}^1_{w^*}(\mathcal{A}, I) = \{0\}$ then \mathcal{A} is called I-connes amenable. If \mathcal{A} is I-connes amenable for every w^* -closed two sided ideal I of \mathcal{A} then \mathcal{A} is called ideally connes amenable [17]. Weak amenability of module extensions of Banach algebras studied by Zhang in [15], Forrest and Marcoux studied derivation of triangular Banach algebras in [7]. First Hochschild cohomology group of triangular Banach algebras studied in [8,?]. Connesamenability of dual of module extensions of Banach algebras investigated in [5].

In [18] dual triangular Banach algebras were introduced and investigated w^* -continuous derivations from these algebras into themselves.

In this paper we study weak*-continuous derivations of dual triangular Banach algebras into their weak*-closed ideals. In a simillar manner of ideal Connes-amenability of dual Banach algebra that is defined in [17], we study some notes on connes- amenability of dual triangular Banach algebras with respect to their w^* -closed ideals.

2 Connes-amenability of module extensions of Banach algebras

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} -bimodule. The Banach algebra $\mathcal{A} \oplus_{\infty} X$ is defined in [5] with the algebra product,

$$(a,x)(b,y) = (ab,ay + xb)$$

and with the norm,

$$||(a, x)|| = \max\{||x||, ||a||\} \quad (a \in \mathcal{A}, x \in X)$$

Theorem 1 [18] $\mathcal{A} \oplus_{\infty} X$ is Connes-amenable if and only if \mathcal{A} is Connesamenable and X = 0.

Theorem 2 [18] Let \mathcal{A} and \mathcal{B} be two dual Banach algebras and \mathcal{M} be a dual Banach space that is a left \mathcal{A} -module and a right \mathcal{B} -module. Then

$$\mathcal{T} = \begin{bmatrix} \mathcal{A} \ \mathcal{M} \\ \mathcal{B} \end{bmatrix} = \mathcal{A} \oplus_{\infty} \mathcal{M} \oplus_{\infty} \mathcal{B},$$

with the sum and product being giving by the usual 2×2 matrix operations and internal module actions is an algebra. Furthermore, by the following norm is a Banach algebra:

$$\| \begin{bmatrix} a \ m \\ b \end{bmatrix} \| = \| (a, m, b) \| = \max\{ \|a\|_{\mathcal{A}}, \|m\|_{\mathcal{M}}, \|b\|_{\mathcal{B}} \}.$$

Let X is a normal Banach \mathcal{T} -bimodule, it is also acted on \mathcal{A}, \mathcal{B} and \mathcal{M} from the left and from the right via the following actions:

$$x \cdot (a, m, b) = x \cdot a + x \cdot m + x \cdot b, \ (a, m, b) \cdot x = a \cdot x + m \cdot x + b \cdot x,$$

for every $a \in \mathcal{A}, m \in \mathcal{M}$ and $b \in \mathcal{B}$. If \mathcal{A} and \mathcal{B} are unital $(e_{\mathcal{A}} \text{ and } e_{\mathcal{B}}, e_{\mathcal{B}})$ respectively) then \mathcal{T} is unital with identity $(e_{\mathcal{A}}, 0, e_{\mathcal{B}}) = \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & e_{\mathcal{B}} \end{bmatrix}$. Therefore, X become a unital \mathcal{T} -bimodule and we have

$$X = e_{\mathcal{A}} \cdot X \cdot e_{\mathcal{A}} + e_{\mathcal{A}} \cdot X \cdot e_{\mathcal{B}} + e_{\mathcal{B}} \cdot X \cdot e_{\mathcal{A}} + e_{\mathcal{B}} \cdot X \cdot e_{\mathcal{B}} + e_{\mathcal{A}} \cdot X \cdot (1 - e_{\mathcal{A}})(1 - e_{\mathcal{B}}) + e_{\mathcal{B}} \cdot X \cdot (1 - e_{\mathcal{A}})(1 - e_{\mathcal{B}}) + (1 - e_{\mathcal{A}})(1 - e_{\mathcal{B}}) \cdot X \cdot e_{\mathcal{A}} + (1 - e_{\mathcal{A}})(1 - e_{\mathcal{B}}) \cdot X \cdot e_{\mathcal{B}}$$
(1)
$$+ (1 - e_{\mathcal{A}})(1 - e_{\mathcal{B}}) \cdot X \cdot (1 - e_{\mathcal{A}})(1 - e_{\mathcal{B}}).$$

Note that action on the left on $(1-e_{\mathcal{A}})(1-e_{\mathcal{B}})\cdot X \cdot e_{\mathcal{A}}, (1-e_{\mathcal{A}})(1-e_{\mathcal{B}})\cdot X \cdot e_{\mathcal{B}}$ and $(1-e_{\mathcal{A}})(1-e_{\mathcal{B}})\cdot X \cdot (1-e_{\mathcal{A}})(1-e_{\mathcal{B}})$ is zero and action on the right on $e_{\mathcal{A}} \cdot X \cdot (1-e_{\mathcal{A}})(1-e_{\mathcal{B}}), e_{\mathcal{B}} \cdot X \cdot (1-e_{\mathcal{A}})(1-e_{\mathcal{B}})$ and $(1-e_{\mathcal{A}})(1-e_{\mathcal{B}}) \cdot X \cdot (1-e_{\mathcal{A}})(1-e_{\mathcal{B}})$ and $(1-e_{\mathcal{A}})(1-e_{\mathcal{B}}) \cdot X \cdot (1-e_{\mathcal{A}})(1-e_{\mathcal{B}})$ is zero. We use these notations in this paper: $X_{\mathcal{A}\mathcal{A}} = e_{\mathcal{A}} \cdot X \cdot e_{\mathcal{A}}, X_{\mathcal{B}\mathcal{B}} = e_{\mathcal{B}} \cdot X \cdot e_{\mathcal{B}}, X_{\mathcal{A}\mathcal{B}} = e_{\mathcal{A}} \cdot X \cdot e_{\mathcal{B}}, \text{ and } X_{\mathcal{B}\mathcal{A}} = e_{\mathcal{B}} \cdot X \cdot e_{\mathcal{A}}.$ If replace \mathcal{T} instead of X, we have $X_{\mathcal{A}\mathcal{A}} = \mathcal{A}, X_{\mathcal{B}\mathcal{B}} = \mathcal{B}, X_{\mathcal{A}\mathcal{B}} = \mathcal{M}$, and $X_{\mathcal{B}\mathcal{A}} = 0$.

Suppose that $I_{\mathcal{A}}$ and $I_{\mathcal{B}}$ are w^* -closed two sided ideals of \mathcal{A} and \mathcal{B} respectively, and let Y be a dual $\mathcal{A} - \mathcal{B}$ -submodule of M such that $I_{\mathcal{A}}M \cup MI_{\mathcal{B}} \subset Y$, then It is easy to show that $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & Y \\ & I_{\mathcal{B}} \end{bmatrix}$ is a w^* -closed two sided ideal in \mathcal{T} . If replace $I_{\mathcal{T}}$ instead of X, we have $X_{\mathcal{A}\mathcal{A}} = I_{\mathcal{A}}, X_{\mathcal{B}\mathcal{B}} = I_{\mathcal{B}}, X_{\mathcal{A}\mathcal{B}} = Y$, and $X_{\mathcal{B}\mathcal{A}} = 0$.

Lemma 1 Let \mathcal{T} be a dual triangular Banach algebra. $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & 0 \\ & I_{\mathcal{B}} \end{bmatrix}$ is a normal dual Banach \mathcal{T} -bimodule. If $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}$ and $D_{\mathcal{B}} : \mathcal{B} \longrightarrow I_{\mathcal{B}}$ are w^* -continuous derivations, then $D_{\mathcal{AB}} : \mathcal{T} \longrightarrow I_{\mathcal{T}}$ defined by

$$\begin{bmatrix} a \ m \\ b \end{bmatrix} \longmapsto D_{\mathcal{A}}(a) + D_{\mathcal{B}}(b)$$

is a w^{*}-continuous derivation. Furthermore, D_{AB} is inner if and only if D_A and D_B are inner.

Proof. Clearly, $D_{\mathcal{AB}}$ is a w^* -continuous derivation. Assume that $D_{\mathcal{A}}$ and $D_{\mathcal{B}}$ are inner. Therefore there exist $x \in I_{\mathcal{A}}$ and $y \in I_{\mathcal{B}}$ such that $D_{\mathcal{A}}(a) = a \cdot x - x \cdot a$ and $D_{\mathcal{B}}(b) = b \cdot y - y \cdot b$ for every $a \in \mathcal{A}$ and $b \in \mathcal{B}$. These lead to

$$D(\begin{bmatrix} a & m \\ b \end{bmatrix}) = D_{\mathcal{A}}(a) + D_{\mathcal{B}}(b) = (a \cdot x - x \cdot a) + (b \cdot y - y \cdot b)$$
$$= (a \cdot x + m \cdot x + b \cdot x - x \cdot a - x \cdot m - x \cdot b)$$
$$+ (a \cdot y + m \cdot y + b \cdot y - y \cdot a - y \cdot m - y \cdot b)$$
$$= (a, m, b) \cdot (x + y) - (x + y) \cdot (a, m, b)$$
$$= \begin{bmatrix} a & m \\ b \end{bmatrix} \cdot (x + y) - (x + y) \cdot \begin{bmatrix} a & m \\ b \end{bmatrix}.$$

Hence, $D_{\mathcal{AB}} \in \mathcal{N}_{w^*}(\mathcal{T}, I_{\mathcal{T}})$. Converse is hold by the same method. \Box

Lemma 2 Let \mathcal{T} be a dual triangular Banach algebra, and $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & Y \\ I_{\mathcal{B}} \end{bmatrix}$ If $D: \mathcal{T} \longrightarrow I_{\mathcal{T}}$ is a w^* -continuous derivation, then there exist w^* -continuous derivations $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}, D_{\mathcal{B}} : \mathcal{B} \longrightarrow I_{\mathcal{B}}$ and there is a w^* -continuous mapping $\theta: \mathcal{M} \longrightarrow Y$ such that

1. $\theta(a \cdot m) = a \cdot \theta(m) + D_{\mathcal{A}}(a) \cdot m,$ 2. $\theta(m \cdot b) = \theta(m) \cdot b + m \cdot D_{\mathcal{B}}(b),$ for every $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathcal{T}$. Moreover, if D is inner then $D_{\mathcal{A}}$ and $D_{\mathcal{B}}$ are inner.

Proof. Define $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}$ by

$$D_{\mathcal{A}}(a) = e_{\mathcal{A}} \cdot D\left(\begin{bmatrix} a & 0\\ & 0 \end{bmatrix}\right) \cdot e_{\mathcal{A}},$$

and $D_{\mathcal{B}}: \mathcal{B} \longrightarrow I_{\mathcal{B}}$ by

$$D_{\mathcal{B}}(b) = e_{\mathcal{B}} \cdot D(\begin{bmatrix} 0 & 0 \\ b \end{bmatrix}) \cdot e_{\mathcal{B}}$$

for every $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Clearly, $D_{\mathcal{A}}$ and $D_{\mathcal{B}}$ are w^* -continuous derivations. Consider the mapping $\theta : \mathcal{M} \longrightarrow Y$ via

$$\theta(m) = e_{\mathcal{A}} \cdot D(\begin{bmatrix} 0 & m \\ 0 \end{bmatrix}) \cdot e_{\mathcal{B}},$$

for every $m \in \mathcal{M}$. By easy calculation one can show that θ satisfies on stated conditions.

Theorem 3 Let \mathcal{T} be a dual triangular Banach algebra and $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & 0 \\ & I_{\mathcal{B}} \end{bmatrix}$ is a w^{*}-closed two sided ideal in \mathcal{T} . Then

$$\mathcal{H}^{1}_{w^{*}}(\mathcal{T}, I_{\mathcal{T}}) \simeq \mathcal{H}^{1}_{w^{*}}(\mathcal{A}, I_{\mathcal{A}}) \oplus \mathcal{H}^{1}_{w^{*}}(\mathcal{B}, I_{\mathcal{B}}).$$
⁽²⁾

Proof. It is obvious by ([18] theorem 2.7)

Corollary 1 Let \mathcal{T} be a dual triangular Banach algebra. Then by above Theorem the following result immediately holds.

 $\begin{array}{l} (i) \ \mathcal{H}^{1}_{w^{*}}(\mathcal{T}, I_{\mathcal{A}}) \simeq \mathcal{H}^{1}_{w^{*}}(\mathcal{A}, I_{\mathcal{A}}). \\ (ii) \ \mathcal{H}^{1}_{w^{*}}(\mathcal{T}, I_{\mathcal{B}}) \simeq \mathcal{H}^{1}_{w^{*}}(\mathcal{B}, I_{\mathcal{B}}). \end{array}$

Example 1 Let $I_{\mathcal{T}} = \begin{bmatrix} \mathcal{A} & 0 \\ \mathcal{B} \end{bmatrix}$ where \mathcal{A} is a Von-Neumann algebra. It is known that \mathcal{A} is ideally connes amenable[17]. Then by applying Corollary 1, $\mathcal{H}_{w^*}^1(\mathcal{T}, I_{\mathcal{A}}) =$ 0 for every w^* -closed two sided ideal $I_{\mathcal{A}}$ in \mathcal{A} similarly if \mathcal{B} is a Von-Neumann algebra then $\mathcal{H}_{w^*}^1(\mathcal{T}, I_{\mathcal{B}}) = 0$ for every w^* -closed two sided ideal $I_{\mathcal{B}}$ in \mathcal{B} .

Lemma 3 ([18]) Let \mathcal{A} and \mathcal{B} be dual Banach algebras. Then $\mathcal{A} \oplus_{\infty} \mathcal{B}$ is a dual Banach algebra with predual $\mathcal{A}_* \oplus_1 \mathcal{B}_*$ and following product and norm:

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2), \ ||(a, b)|| = \max\{||a||_{\mathcal{A}}, ||b||_{\mathcal{B}}\}$$

Corollary 2 ([18]) Let \mathcal{A} and \mathcal{B} be dual Banach algebras. Then $\mathcal{A} \oplus_{\infty} \mathcal{B}$ is Connes-amenable if and only if \mathcal{A} and \mathcal{B} are Connes-amenable.

Theorem 4 ([18]) Let \mathcal{T} be a dual triangular Banach algebra. Then \mathcal{T} is Connes-amenable if and only if \mathcal{A} and \mathcal{B} are Connes-amenable and $\mathcal{M} = 0$.

Now, this question arise that for triangular dual Banach algebra \mathcal{T} , when $\mathcal{H}^1_{w^*}(\mathcal{T}, I_{\mathcal{T}}) = \{0\}$? From now on, suppose that \mathcal{A} and \mathcal{B} are dual Banach algebras and \mathcal{M} is a dual and normal Banach left \mathcal{A} -module and is a dual and normal Banach right \mathcal{B} -module, and finally, \mathcal{T} is a dual triangular Banach algebra defined as before.

We start with the following Lemma that its proof is straightforward (see Proposition 2.1 of [7] and Lemma 2).

Lemma 4 Let \mathcal{T} be a dual triangular Banach algebra. $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & Y \\ & I_{\mathcal{B}} \end{bmatrix}$ an ideal in \mathcal{T} and $D : \mathcal{T} \longrightarrow I_{\mathcal{T}}$ be a w^* -continuous derivation. Then there are w^* -continuous derivation $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}, D_{\mathcal{B}} : \mathcal{B} \longrightarrow I_{\mathcal{B}}, m_D \in Y$ and w^* -continuous linear mapping $\theta : \mathcal{M} \longrightarrow Y$ such that:

$$(i) \ D(\begin{bmatrix} e_{\mathcal{A}} \ 0\\ 0 \end{bmatrix}) = \begin{bmatrix} 0 \ m_D\\ 0 \end{bmatrix}.$$

 $(ii) D\begin{pmatrix} a & 0 \\ 0 \end{pmatrix} = \begin{bmatrix} D_{\mathcal{A}}(a) & a \cdot m_{D} \\ 0 \end{bmatrix}.$ $(iii) D\begin{pmatrix} 0 & 0 \\ e_{\mathcal{B}} \end{pmatrix} = \begin{bmatrix} 0 & -m_{D} \\ 0 \end{bmatrix}.$ $(iv) D\begin{pmatrix} 0 & 0 \\ b \end{pmatrix} = \begin{bmatrix} 0 & -m_{D} \cdot b \\ D_{\mathcal{B}}(b) \end{bmatrix}.$ $(v) D\begin{pmatrix} 0 & m \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & \theta(m) \\ 0 \end{bmatrix}.$ $(vi) \theta(a \cdot m) = a \cdot \theta(m) + D_{\mathcal{A}}(a) \cdot m.$ $(vii) \theta(m \cdot b) = \theta(m) \cdot b + m \cdot D_{\mathcal{B}}(b).$

Conversely, if $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}$ and $D_{\mathcal{B}} : \mathcal{B} \longrightarrow I_{\mathcal{B}}$ are w^* -continuous derivations and $\theta : \mathcal{M} \longrightarrow Y$ is a linear w^* -continuous map that satisfies in conditions (vi) and (vii), then $D : \mathcal{T} \longrightarrow I_{\mathcal{T}}$ defined by

$$D(\begin{bmatrix} a \ m \\ b \end{bmatrix}) = \begin{bmatrix} D_{\mathcal{A}}(a) \ \theta(m) \\ D_{\mathcal{B}}(b) \end{bmatrix},$$

is a w^* -continuous derivation.

Definition 1 Let \mathcal{A} , \mathcal{B} , \mathcal{M} , $I_{\mathcal{A}}$, $I_{\mathcal{B}}$, Y be as before

- (i) For any $a \in I_{\mathcal{A}}$ and $b \in I_{\mathcal{B}}$, we say the w^* -continuous linear mapping $\theta_{a,b} : \mathcal{M} \longrightarrow Y$ is a w^* -Rosenblum operator on \mathcal{M} with coefficients in Y if $\theta_{a,b}(m) = a \cdot m m \cdot b$, for every $m \in \mathcal{M}$.
- (ii) We say the w^* -continuous linear mapping $\theta : \mathcal{M} \longrightarrow Y$ is a w^* -generalized Rosenblum operator if there are w^* -continuous derivations $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}$ and $D_{\mathcal{B}} : \mathcal{B} \longrightarrow I_{\mathcal{B}}$ such that

$$\theta(a \cdot m \cdot b) = D_{\mathcal{A}}(a) \cdot m \cdot b + a \cdot \theta(m) \cdot b + a \cdot m \cdot D_{\mathcal{B}}(b),$$

for every $a \in \mathcal{A}, b \in \mathcal{B}$ and $m \in \mathcal{M}$.

- (iii) We shall denote the centralizer of \mathcal{A} in $I_{\mathcal{A}}$ as $Z_{\mathcal{A}}(I_{\mathcal{A}}) = \{x \in I_{\mathcal{A}} : x.a = a.x \quad \forall \ a \in \mathcal{A}\}$ and the centralizer of \mathcal{B} in $I_{\mathcal{B}}$ as $Z_{\mathcal{B}}(I_{\mathcal{B}}) = \{z \in I_{\mathcal{B}} : z.b = b.z \quad \forall \ b \in \mathcal{B}\}$. We say $\theta_{a,b}$ is a w^* -central Rosenblum operator on \mathcal{M} with coefficients in Y if $a \in Z_{\mathcal{A}}(I_{\mathcal{A}})$ and $b \in Z_{\mathcal{B}}(I_{\mathcal{B}})$. We denote the space of all w^* -central Rosenblum operators by $ZR_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$.
- (iv) We denote the space of all w^* -continuous left \mathcal{A} -module morphisms and w^* -continuous right \mathcal{B} -module morphisms on \mathcal{M} by

$$Hom_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y) = \{\varphi : \mathcal{M} \longrightarrow Y; \varphi(a.m.b) = a.\varphi(m).b \quad \forall a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B} \}$$
, if $\mathcal{A} = \mathcal{B}$, we write $Hom_{w^*}^{\mathcal{A}}(\mathcal{M},Y).$

Lemma 5 [7, Lemma 2.6, 2.7] Let \mathcal{T} be a dual triangular Banach algebra. Then

(i) $ZR_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y) \subseteq \operatorname{Hom}_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y).$

(ii) Let $\varphi \in \operatorname{Hom}_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$. Then $D_{\varphi}: \mathcal{T} \longrightarrow I_{\mathcal{T}}$ defined by

$$D_{\varphi}\left(\begin{bmatrix}a \ m\\b\end{bmatrix}\right) = \begin{bmatrix}0 \ \varphi(m)\\0\end{bmatrix}$$

is a w^{*}-continuous derivation. Moreover, D_{φ} is an inner derivation if and only if there exist $x \in Z_{\mathcal{A}}(I_{\mathcal{A}}), y \in Z_{\mathcal{B}}(I_{\mathcal{B}})$ such that $\varphi = \tau_{x,y} \in ZR_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y).$

Proof. (i) Let $\tau_{x,y} \in ZR_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$. Then

$$\begin{aligned} x_{x,z}(a,m,b) &= xamb - ambz \\ &= axmb - amzb \\ &= a(xm - mz)b \\ &= a\tau_{x,z}(m)b. \end{aligned}$$

(ii) The first statement follows immediately from Lemma 4 when $D_{\mathcal{A}} = D_{\mathcal{B}} = 0$.

Assume that $\varphi = \tau_{x,z}$ where $x \in Z_{\mathcal{A}}(I_{\mathcal{A}}), z \in Z_{\mathcal{B}}(I_{\mathcal{B}})$. Then

$$\begin{split} \delta_{\begin{bmatrix} x & 0 \\ z \end{bmatrix}} \left(\begin{bmatrix} a & m \\ b \end{bmatrix} \right) &= \begin{bmatrix} x & 0 \\ z \end{bmatrix} \begin{bmatrix} a & m \\ b \end{bmatrix} - \begin{bmatrix} a & m \\ b \end{bmatrix} \begin{bmatrix} x & 0 \\ z \end{bmatrix} \\ &= \begin{bmatrix} xa - ax & xm - mz \\ zb - bz \end{bmatrix} \\ &= \begin{bmatrix} 0 & xm - mz \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \varphi(m) \\ 0 \end{bmatrix} = \delta_{\varphi} \left(\begin{bmatrix} a & m \\ b \end{bmatrix} \right). \end{split}$$

Hence δ_{φ} is inner. Conversely, assume that δ_{φ} is inner. Then there exists $\begin{bmatrix} a \ m \\ b \end{bmatrix} \in I_{\mathcal{T}}$ such that $\delta_{\varphi} = \delta \begin{bmatrix} x \ y \\ z \end{bmatrix}$. However $\delta \begin{bmatrix} x \ y \\ z \end{bmatrix} \left(\begin{bmatrix} a \ m \\ b \end{bmatrix} \right) = \begin{bmatrix} x \ y \\ z \end{bmatrix} \begin{bmatrix} a \ m \\ b \end{bmatrix} - \begin{bmatrix} a \ m \\ b \end{bmatrix} \begin{bmatrix} x \ y \\ z \end{bmatrix}$ $= \begin{bmatrix} xa - ax \ xm + yb - ay - mz \\ zb - bz \end{bmatrix}$

If $\delta_{\varphi} = \delta \begin{bmatrix} x & y \\ z \end{bmatrix}$, then xa - ax = 0 for all $a \in \mathcal{A}$ and zb - bz = 0 for all $b \in \mathcal{B}$. In particular, $x \in Z_{\mathcal{A}}(I_{\mathcal{A}}), z \in Z_{\mathcal{B}}(I_{\mathcal{B}})$. Moreover, we have $\varphi(m) = xm + yb - ay - mz$. Since $\varphi \in Hom_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$, it follows that yb - ay = 0. Hence $\varphi(m) = xm - mz = \tau_{x,z}(m)$. In particular, $\varphi \in ZR_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$.

Proposition 1 [7, Theorem 2.8] Let \mathcal{T} be a dual triangular Banach algebra. If $\mathcal{H}^1_{w^*}(\mathcal{A}, I_{\mathcal{A}}) = 0$ and $\mathcal{H}^1_{w^*}(\mathcal{B}, I_{\mathcal{B}}) = 0$, then

$$\mathcal{H}^{1}_{w^{*}}(\mathcal{T}, I_{\mathcal{T}}) \cong \frac{\operatorname{Hom}_{w^{*}}^{\mathcal{A}, \mathcal{B}}(\mathcal{M}, Y)}{ZR_{w^{*}}^{\mathcal{A}, \mathcal{B}}(\mathcal{M}, Y)}$$

Proof. Let $\Phi : Hom_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y) \longrightarrow \mathcal{H}^1_{w^*}(\mathcal{T},I_{\mathcal{T}})$ defined by: $\Phi(\varphi) = \overline{\delta}_{\varphi}$ where $\overline{\delta}_{\varphi}$ represents equivalence class of δ_{φ} in $\mathcal{H}^1_{w^*}(\mathcal{T},I_{\mathcal{T}})$. Clearly Φ is linear. We first show that Φ is surjective. Let $D: \mathcal{T} \longrightarrow I_{\mathcal{T}}$ be a w^* -continuous derivation. Let $D_{\mathcal{A}}, D_{\mathcal{B}}, \theta, m_D$ be as in Lemma 4. Since $\mathcal{H}^1_{w^*}(\mathcal{A}, I_{\mathcal{A}}) = 0$ and $\mathcal{H}^1_{w^*}(\mathcal{B}, I_{\mathcal{B}}) = 0$ we can find $x \in I_{\mathcal{A}}, z \in I_{\mathcal{B}}$ such that $D_{\mathcal{A}} = \delta_x$ and $D_{\mathcal{B}} = \delta_z$. Define $D_0: \mathcal{T} \longrightarrow I_{\mathcal{T}}$ by

$$D_0\left(\begin{bmatrix} a \ m \\ b \end{bmatrix} = \begin{bmatrix} \delta_x(a) \ \mathcal{T}_{x,z}(m) + (a.m_D - m_D.b) \\ \delta_z(b) \end{bmatrix}$$

Then D_0 is the inner derivation induced by $\mathcal{T} = \begin{bmatrix} x & -m_D \\ z \end{bmatrix}$ and as such D_0 is clearly w^* -continuous. Further more if $D_1 = D - D_0$ then D_1 is a w^* -continuous derivation and due to Lemma 4

$$D_{1}\begin{pmatrix} a \ m \\ b \end{pmatrix} = \begin{bmatrix} \delta_{x}(a) & \theta(m) + (a.m_{D} - m_{D}.b) \\ \delta_{z}(b) \end{bmatrix} - \begin{bmatrix} \delta_{x}(a) & \mathcal{T}_{x,z}(m) + (a.m_{D} - m_{D}.b) \\ \delta_{z}(b) \end{bmatrix}$$
$$= \begin{bmatrix} 0 & \theta(m) - \mathcal{T}_{x,z}(m) \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & \mathcal{T}_{1}(m) \\ 0 \end{bmatrix}$$

where $\mathcal{T}_1 = \theta - \mathcal{T}_{x,z}$.

It is easy to see that $\mathcal{T}_1 \in Hom_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$. Finally $\overline{D} = \overline{D_1} = \Phi(\mathcal{T}_1)$, and so Φ is surjective. We have shown that

$$\mathcal{H}^{1}_{w^{*}}(\mathcal{T}, I_{\mathcal{T}}) \cong \frac{Hom_{w^{*}}^{\mathcal{A}, \mathcal{B}}(\mathcal{M}, Y)}{Ker\Phi}.$$

However $\varphi \in Ker\Phi$ if and only if δ_{φ} is inner. By lemma $Ker\Phi = ZR_{w^*}^{\mathcal{A},\mathcal{B}}(\mathcal{M},Y)$

Let \mathcal{A} be a unital dual Banach algebra and consider $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ \mathcal{A} \end{bmatrix}$ and $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & I_{\mathcal{A}} \\ I_{\mathcal{A}} \end{bmatrix}$ then in light of Lemma 4, if $D_{\mathcal{A}} : \mathcal{A} \longrightarrow I_{\mathcal{A}}$ is a w^* -continuous derivation then $D : \mathcal{T} \longrightarrow I_{\mathcal{T}}$ defined by

$$D\left(\begin{bmatrix} a \ m \\ b \end{bmatrix} = \begin{bmatrix} D_{\mathcal{A}}(a) \ D_{\mathcal{A}}(m) \\ D_{\mathcal{A}}(b) \end{bmatrix},$$

is a w^* -continuous derivation. Moreover, D is inner if and only if $D_{\mathcal{A}}$ is inner. It follows immediately that there exists a linear isomorphism from $\mathcal{H}^1_{w^*}(\mathcal{A}, I_{\mathcal{A}})$ onto a subspace $\mathcal{H}^1_{w^*}(\mathcal{T}, I_{\mathcal{T}})$ [7, Corllary 3.2]. Hence if $\mathcal{H}^1_{w^*}(\mathcal{T}, I_{\mathcal{T}}) = 0$ then $\mathcal{H}^1_{w^*}(\mathcal{A}, I_{\mathcal{A}}) = 0$. Therefore we can write the following result that its proof is similar to proof of Proposition 3.3 of [7] but replace identity map $id : \mathcal{A} \longrightarrow \mathcal{A}$ by natural projection map from \mathcal{A} onto $I_{\mathcal{A}}$ which is clearly in $Hom_{w^*}^{\mathcal{A}}(\mathcal{A}, I_{\mathcal{A}})$.

Proposition 2 Let \mathcal{A} be a dual Banach algebra (non-unital) and $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ \mathcal{A} \end{bmatrix}$ be a dual triangular Banach algebra and $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & I_{\mathcal{A}} \\ I_{\mathcal{A}} \end{bmatrix}$. If $\mathcal{H}^{1}_{w^{*}}(\mathcal{T}, I_{\mathcal{T}}) = 0$ then $\mathcal{H}^{1}_{w^{*}}(\mathcal{A}, I_{\mathcal{A}}) = 0$ and \mathcal{A} is unital.

Proposition 3 Let \mathcal{A} be a unital dual Banach algebra and \mathcal{T} , $I_{\mathcal{T}}$ be the above defined dual triangular Banach algebras, then $\mathcal{H}^1_{w^*}(\mathcal{A}, I_{\mathcal{A}}) = 0$ if and only if $\mathcal{H}^1_{w^*}(\mathcal{T}, I_{\mathcal{T}}) = 0$.

Proof. Lemma 4.3 of [8] leads to $Hom_{w^*}^{\mathcal{A}}(\mathcal{A}, I_{\mathcal{A}}) \simeq ZR_{w^*}^{\mathcal{A}}(\mathcal{A}, I_{\mathcal{A}})$ and Proposition 1 implies that $\mathcal{H}^1_{w^*}(\mathcal{T}, I_{\mathcal{T}}) = 0$. Proposition 2 implies that the converse assertion also holds true.

Example 2 Let \mathcal{A} be a Von-Neumann algebra or $\mathcal{A} = B(G)$, Fourier Stieltjes algebra of G where G is a locally compact amenable group, hence \mathcal{A} is a unital dual Banach algebra, let $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ \mathcal{A} \end{bmatrix}$ and $I_{\mathcal{T}} = \begin{bmatrix} I_{\mathcal{A}} & I_{\mathcal{A}} \\ I_{\mathcal{A}} \end{bmatrix}$. Then in light of ideal Connes-amenability \mathcal{A} [17] and Proposition 3, we have $\mathcal{H}^1_{w^*}(\mathcal{T}, I_{\mathcal{T}}) = 0$.

References

- 1. F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin (1973).
- H. G. Dales, Banach algebras and automatic continuity, London Math. Society Monographs, Vol. 24, Clarendon Press, Oxford (2000).
- M. Eshaghi Gordji and T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci., 114(4), 399–403 (2004).
- M. Eshaghi Gordji, F. Habibian and Hayati, Ideal amenability of module extension of dual Banach algebras, Arc. Math. (Brno), 43, 177–184 (2007).
- M. Eshaghi Gordji, F. Habibian and A. Rejali, Module extension of dual Banach algebras, Bull. Korean Math. Soc., 47(4), 663–673 (2010).
- M. Eshaghi Gordji, A. Ebadian, F. Habibian and B. Hayati, Weak*-continuous derivations in dual Banach algebras, Arc. Math. (Brno), 48, 39–44 (2012).
- B. E. Forrest and L.W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J., 45, 441–462 (1996).
- B. E. Forrest and L.W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc., 354, 1435–1452 (2001).
- F. Ghahramani and R.J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, 229–260 (2004).
- Y. Choi, F. Ghahramani and Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal., 256, 3158–3191 (2009).
- B. E. Johnson, Cohomology in Banach algebras, Memoir American Math. Soc., 127 (1972).

- A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc., 31(2), 57–69 (2005).
- 13. V. Runde, Lectures on Amenability, Springer, New York (2002).
- 14. S. Sakai, C*-algebras and W*-algebras, Springer (1971).
- Y. Zhang, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc., 354(10), 4131–4151 (2002).
- 16. Y. Zhang, 2m-weak amenability of group algebras, J. Math. Anal. Appl., 396, 412–416 (2012).
- A. Minapoor, A. Bodaghi, and D. Ebrahimi Bagha, Ideal Connes-amenability of dual Banach Algebras, Mediterr. J. Math. 14: 174. https://doi.org/10.1007/s00009-017-0970-2 (2017).
- A. Ebadian and A. Jabbari, Weak*-continuous derivations on module extension of dual Banach algebras, South Asian Bulletin of Mathematics, 39, 347–363 (2015).