
Global Analysis and Discrete Mathematics
Volume 4, Issue 1, pp. 15–29
ISSN: 2476-5341

Fixed Points of (ψ, φ)Ω-Contractive Mappings in Ordered
P-Metric Spaces

V. Parvaneh1,∗, S.J.H. Ghoncheh2

Received: 3 January 2019 / Accepted: 1 June 2019

Abstract In this paper, we introduce the notion of an extended metric space
(p-metric space) as a new generalization of the concept of b-metric space. Also,
we present the concept of (ψ,φ)Ω-contractive mappings and we establish some
fixed point results for this class of mappings in ordered complete p-metric
spaces. Our results generalize several well-known comparable results in the
literature. Finally, examples support our results.
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1 Introduction

The Banach contraction principle [5] is a very powerful tool for solving prob-
lems in nonlinear analysis. Some authors generalized this interesting theorem
in different ways (see, e.g., [1,2,7,8,10,11,14,18]).

Khan et al. [17] introduced the concept of an altering distance function as
follows.

Definition 1 [17] The function φ : [0,+∞) → [0,+∞) is called an altering
distance function, if the following properties hold:
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1. φ is continuous and non-decreasing.
2. φ(t) = 0 if and only if t = 0.

So far, many authors have studied fixed point theorems which are based
on altering distance functions (see, e.g., [1,12,15,17,19,21,23,24]).

The concept of a b-metric space was introduced by Czerwik in [9]. After
that, several interesting results about the existence of a fixed point for single-
valued and multi-valued operators in b-metric spaces have been obtained (see,
[1,3,4,6,13,16,20,22,26]).

Definition 2 [9] LetX be a (nonempty) set and s ≥ 1 be a given real number.
A function d : X ×X → R+ is a b-metric iff for all x, y, z ∈ X, the following
conditions hold:

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.

A b-metric is a metric, when s = 1.

Motivated with [9], the following definitions and results will be needed in
the sequel.

Definition 3 Let X be a (nonempty) set. A function d̃ : X ×X → R+ is a
p-metric iff there exists a strictly increasing continuous function Ω : [0,∞) →
[0,∞) with x ≤ Ω(x) such that for all x, y, z ∈ X, the following conditions
hold:

(p1) d̃(x, y) = 0 iff x = y,

(p2) d̃(x, y) = d̃(y, x),

(p3) d̃(x, z) ≤ Ω(d̃(x, y) + d̃(y, z)).

In this case, the pair (X, d̃) is called a p-metric space, or, an extended b-metric
space.

It should be noted that, the class of p-metric spaces is considerably larger
than the class of b-metric spaces, since a b-metric is a p-metric, whenΩ(x) = sx
while a metric is a p-metric, when Ω(x) = x.

Here, we present an example to show that in general, a p-metric need not
necessarily to be a b-metric.

Example 1 Let (X, d̃) be a metric space and ρ(x, y) = sinh d̃(x, y). We show
that ρ is a p-metric with Ω(t) = sinh(t) for all t ≥ 0.

Obviously, conditions (p1) and (p2) of Definition 3 are satisfied.
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For each x, y, z ∈ X,

ρ(x, y)

= sinh(d̃(x, y)) ≤ sinh(d̃(x, z) + d̃(z, y))

≤ sinh[sinh(d̃(x, z)) + sinh(d̃(z, y))]
= sinh(ρ(x, z) + ρ(z, y))
= Ω(ρ(x, z) + ρ(z, y)).

rl (1)

So, condition (p3) of Definition 3 is also satisfied and ρ is a p-metric. Note
that, sinh|x− y| is not a metric on R, as we know that

sinh 5 = 74.2032105778 ≥ 3.62686040785 + 10.0178749274 = sinh 2 + sinh 3.

Obviously, sinh|x− y| is not also a b-metric for any s ≥ 1.

Example 2 Let (X, d̃) be a metric space and ρ(x, y) = ed̃(x,y) − 1. We show
that ρ is a p-metric with Ω(t) = et − 1.

Obviously, conditions (p1) and (p2) of Definition 3 are satisfied.
On the other hand, for each x, y, z ∈ X,

ρ(x, y)

= ed̃(x,y) − 1 ≤ ed̃(x,z)+d̃(z,y) − 1

≤ ee
d̃(x,z)−1+ed̃(z,y)−1 − 1

= e(ρ(x,z)+ρ(z,y)) − 1
= Ω(ρ(x, z) + ρ(z, y)).

(2)

So, condition (p3) of Definition 3 is also satisfied and ρ is a p-metric.

In general, we have the following proposition.

Proposition 1 Let (X, d̃) be a metric space with coefficient s ≥ 1 and let

ρ(x, y) = ξ(d̃(x, y)) where ξ : [0,∞) → [0,∞) is a strictly increasing function
with x ≤ ξ(x) and 0 = ξ(0). We show that ρ is a p-metric with Ω(t) = ξ(t).

For each x, y, z ∈ X,

ρ(x, y)

= ξ(d̃(x, y)) ≤ ξ(d̃(x, z) + d̃(z, y))

≤ ξ(ξ(d̃(x, z)) + ξ(d̃(z, y))
= Ω(ρ(x, z) + ρ(z, y)).

(3)

So, ρ is a p-metric.

The above proposition constructs the following example:

Example 3 Let (X, d̃) be a metric space and let ρ(x, y) = ed̃(x,y) sec−1(ed̃(x,y)).
Then ρ is a p-metric with Ω(t) = et sec−1(et).
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Definition 4 Let (X, d̃) be a p-metric space. Then a sequence {xn} in X is
called:

(a) p-convergent if and only if there exists x ∈ X such that d̃(xn, x) → 0,
as n→ +∞. In this case, we write lim

n→∞
xn = x.

(b) p-Cauchy if and only if d̃(xn, xm) → 0 as n,m→ +∞.

(c) The p-metric space (X, d̃) is p-complete if every p-Cauchy sequence in
X p-converges.

Proposition 2 In a p-metric space (X, d̃), as Ω(0) = 0,
p1. A p-convergent sequence has a unique limit.
p2. Each p-convergent sequence is p-Cauchy.
p3. In general, a p-metric is not continuous.

We will need the following simple lemma about the p-convergent sequences.

Lemma 1 Let (X, d̃) be a p-metric space with a strictly increasing continuous
function Ω : [0,∞) → [0,∞), and suppose that {xn} and {yn} p-converge to
x, y, respectively. Then, we have

(Ω2)−1(d̃(x, y)) ≤ lim inf
n−→∞

d̃(xn, yn) ≤ lim sup
n−→∞

d̃(xn, yn) ≤ Ω2(d̃(x, y)).

In particular, if x = y, then, limn−→∞d̃(xn, yn) = 0. Moreover, for each
z ∈ X we have

Ω−1(d̃(x, z)) ≤ lim inf
n−→∞

d̃(xn, z) ≤ lim sup
n−→∞

d̃(xn, z) ≤ Ω(d̃(x, z)).

Proof. (a) Using the p-triangular inequality, it is easy to see that

d̃(x, y) ≤ Ω(d̃(x, xn) + d̃(xn, y))

≤ Ω(d̃(x, xn) +Ω(d̃(xn, yn) + d̃(yn, y)))
(4)

and
d̃(xn, yn) ≤ Ω(d̃(xn, x) +Ω(d̃(x, y) + d̃(y, yn))).

Taking the lower limit as n→ ∞ in the first inequality one has

d̃(x, y) ≤ Ω(Ω(lim inf
n−→∞

d̃(xn, yn)))

and taking the upper limit as n→ ∞ in the second inequality we have

lim sup
n−→∞

d̃(xn, yn) ≤ Ω(Ω(d̃(x, y))).

(b) Using the p-triangular inequality, it is easy to see that

d̃(x, z) ≤ Ω(d̃(x, xn) + d̃(xn, z))

and
d̃(xn, z) ≤ Ω(d̃(xn, x) + d̃(x, z)).
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Taking the lower limit as n→ ∞ in the first inequality one has

d̃(x, z) ≤ Ω(lim inf
n−→∞

d̃(xn, z))

and taking the upper limit as n→ ∞ in the second inequality we have

lim sup
n−→∞

d̃(xn, z) ≤ Ω(d̃(x, z)).

In this paper, we introduce the notion of generalized (ψ,φ)Ω-contractive
mapping and we establish some results in complete ordered p-metric spaces,
where ψ and φ are altering distance functions. Our results generalize several
comparable results in the literature.

2 Main results

In this section, we define the notion of (ψ,φ)Ω-contractive mapping and prove
our new results.

Let (X,≼, d) be an ordered p-metric space and let f : X → X be a map-
ping. Set

M(x, y) = max

{
d̃(x, y), d̃(x, fx), d̃(y, fy), d̃(y, fx)

}
. (5)

Definition 5 Let (X,≼, d) be an ordered p-metric space. We say that a map-
ping f : X → X is an ordered (ψ,φ)Ω-contractive mapping if there exist two
altering distance functions ψ and φ and strictly increasing continuous function
Ω : [0,∞) → [0,∞) with x ≤ Ω(x), for all nonnegative real number x such
that

ψ(Ω(d̃(fx, fy))) ≤ ψ(M(x, y))− φ(M(x, y)) (6)

for all comparable elements x, y ∈ X.

Now, let us to prove our first result.

Theorem 1 Let (X,≼, d) be a partially ordered p-complete p-metric space.
Let f : X → X be an ordered non-decreasing continuous ordered (ψ,φ)Ω-
contractive mapping. If there exists x0 ∈ X such that x0 ≼ fx0, then f has a
fixed point.

Proof : Let x0 ∈ X be arbitrary. Define a sequence (xn) in X such that
xn+1 = fxn, for all n ≥ 0. Since x0 ≼ fx0 = x1 and f is non-decreasing, we
have x1 = fx0 ≼ x2 = fx1. Inductively, we have

x0 ≼ x1 ≼ · · · ≼ xn ≼ xn+1 ≼ · · · .



20 V. Parvaneh and S.J.H. Ghoncheh

If xn = xn+1, for some n ∈ N , then xn = fxn and hence xn is a fixed point
of f . So, we may assume that xn ̸= xn+1, for all n ∈ N . By (6), we have

ψ(d̃(xn, xn+1)) ≤ ψ(Ω(d̃(xn, xn+1)))

= ψ(Ω(d̃(fxn−1, fxn)))
≤ ψ(M(xn−1, xn))− φ(M(xn−1, xn)),

(7)

where

M(xn−1, xn) = max

{
d̃(xn−1, xn), d̃(xn−1, fxn−1), d̃(xn, fxn), d̃(xn, fxn−1)

}
= max

{
d̃(xn−1, xn), d̃(xn, xn+1)

}
= max

{
d̃(xn−1, xn), d̃(xn, xn+1)

}
.

(8)
From (7) and (8) and the properties of ψ and φ, we get

ψ(d̃(xn, xn+1)) ≤ ψ

(
max

{
d̃(xn−1, xn), d̃(xn, xn+1)

})
−φ

(
max

{
d̃(xn−1, xn), d̃(xn, xn+1)

})
< ψ

(
max

{
d̃(xn−1, xn), d̃(xn, xn+1)

})
.

(9)

If

max

{
d̃(xn−1, xn), d̃(xn, xn+1)

}
= d̃(xn, xn+1),

then by (9) we have

ψ(d̃(xn, xn+1)) ≤ ψ(d̃(xn, xn+1))− φ(d̃(xn, xn+1))

< ψ(d̃(xn, xn+1)),
(10)

which gives a contradiction. Thus,

max

{
d̃(xn−1, xn), d̃(xn, xn+1)

}
= d̃(xn−1, xn).

Therefore (9) becomes

ψ(d̃(xn, xn+1)) ≤ ψ(d̃(xn, xn−1))− φ(d̃(xn−1, xn)) < ψ(d̃(xn, xn−1)). (11)

Since ψ is a non-decreasing mapping, {d̃(xn, xn+1) : n ∈ N ∪ {0}} is a non-
increasing sequence of positive numbers. So, there exists r ≥ 0 such that

lim
n→∞

d̃(xn, xn+1) = r. (12)

Letting n→ ∞ in (11), we get

ψ(r) ≤ ψ(r)− φ(r) ≤ ψ(r). (13)
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Therefore, φ(r) = 0, and hence r = 0. Thus, we have

lim
n→∞

d̃(xn, xn+1) = 0. (14)

Next, we show that {xn} is a p-Cauchy sequence in X. By contradiction,
there exists ε > 0 for which we can find two subsequences {xmi} and {xni} of
{xn} such that ni is the smallest index for which

ni > mi > i, d̃(xmi , xni) ≥ ε. (15)

This means that
d̃(xmi , xni−1) < ε. (16)

From (15) and using the p-triangular inequality, we get

ε ≤ d̃(xmi , xni)

≤ Ω(d̃(xmi , xmi−1) + d̃(xmi−1, xni))

≤ Ω(d̃(xmi , xmi−1) +Ω(d̃(xmi−1, xni−1) + d̃(xni−1, xni))).

(17)

Using (17) and taking the upper limit as i→ ∞, we get

(Ω2)−1(ε) ≤ lim inf
i−→∞

d̃(xmi−1, xni−1). (18)

On the other hand, we have

d̃(xmi−1, xni−1) ≤ Ω(d̃(xmi−1, xmi) + d̃(xmi , xni−1)). (19)

Using (14), (16) and taking the upper limit as i→ ∞, we get

lim sup
i−→∞

d̃(xmi−1, xni−1) ≤ Ω(ε). (20)

On the other hand, we have

d̃(xmi , xni) ≤ Ω(d̃(xmi , xni−1) + d̃(xni−1, xni)). (21)

Using (14), (15) and taking the upper limit as i→ ∞, we get

lim sup
i−→∞

d̃(xmi , xni−1) ≥ Ω−1(ε). (22)

From (6), we have

ψ(Ω(d̃(xmi , xni))) = ψ(Ω(d̃(fxmi−1, fxni−1)))
≤ ψ(M(xmi−1, xni−1))− φ(M(xmi−1, xni−1)),

(23)

where

M(xmi−1, xni−1) = max

{
d̃(xmi−1, xni−1), d̃(xmi−1, fxmi−1), d̃(xni−1, fxni−1), d̃(xni−1, fxmi−1)

}
= max

{
d̃(xmi−1, xni−1), d̃(xmi−1, xmi), d̃(xni−1, xni), d̃(xni−1, xmi)

}
.

(24)
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Taking the upper limit as i→ ∞ in (24) and using (14), we get

lim sup
i−→∞

M(xmi−1, xni−1) = max{lim sup
i−→∞

d̃(xmi−1, xni−1), 0, 0, lim sup
i−→∞

d̃(xmi , xni−1)} ≤ Ω(ε).

(25)
So, we have

lim sup
i−→∞

M(xmi−1, xni−1) ≤ Ω(ε), (26)

Similarly, we obtain that

(Ω2)−1(ε) ≤ lim inf
i−→∞

M(xmi−1, xni−1). (27)

Now, taking the upper limit as i → ∞ in (23) and using (26) and (27), we
have

ψ(Ω(ε)) ≤ ψ(Ω(lim sup
i−→∞

d̃(xmi , xni)))

≤ ψ(lim sup
i−→∞

M(xmi−1, xni−1))− lim inf
i−→∞

φ(M(xmi−1, xni−1))

≤ ψ(Ω(ε))− φ(lim inf
i−→∞

M(xmi−1, xni−1)),

(28)

which further implies that

φ(lim inf
i−→∞

M(xmi−1, xni−1)) = 0,

so lim inf
i−→∞

M(xmi−1, xni−1) = 0, a contradiction to (27). Thus, {xn+1 = fxn}
is a p-Cauchy sequence in X. As X is a p-complete space, there exists u ∈ X
such that xn → u as n→ ∞, and

lim
n→∞

xn+1 = lim
n→∞

fxn = u.

Now, as f is continuous, using the p-triangular inequality, we get

d̃(u, fu) ≤ Ω(d̃(u, fxn) + d̃(fxn, fu)).

Letting n→ ∞, we get

d̃(u, fu) ≤ Ω( lim
n→∞

d̃(u, fxn) + lim
n→∞

d̃(fxn, fu)) = 0.

So, we have fu = u. Thus, u is a fixed point of f .
Note that the continuity of f in Theorem 1 is not necessary and can be

dropped.
Recall that, an ordered p-metric space (X,≼, p) is said to have sequential

limit comparison property (s.l.c.p) if for every nondecreasing sequence {xn}
in X, converging to some x ∈ X, xn ≼ x holds for all n ∈ N .

Theorem 2 Under the same hypotheses of Theorem 1, without the continuity
assumption of f , assume that (X,≼, p) enjoys the s.l.c.p.. Then f has a fixed
point in X.
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Proof. Following the proof of Theorem 1, we construct an increasing se-
quence {xn} in X such that xn → u, for some u ∈ X. Using the assumption
s.l.c.p. on X, we have xn ≼ u, for all n ∈ N . Now, we show that fu = u. By
(6), we have

ψ(Ω(d̃(xn+1, fu))) = ψ(Ω(d̃(fxn, fu))
≤ ψ(M(xn, u))− φ(M(xn, u)),

(29)

where

M(xn, u) = max
{
d̃(xn, u), d̃(xn, fxn), d̃(u, fu), d̃(fxn, u)

}
= max

{
d̃(xn, u), d̃(xn, xn+1), d̃(u, fu), d̃(xn+1, u)

}
.

(30)

Letting n→ ∞ in (30) and using Lemma 1, we get

lim sup
i−→∞

M(xn, u) = d̃(u, fu). (31)

Similarly, we can obtain

lim inf
i−→∞

M(xn, u) = d̃(u, fu). (32)

Again, taking the upper limit as n→ ∞ in (29) and using Lemma 1 and (31)
we get

ψ(d̃(u, fu) = ψ(Ω(Ω−1(d̃(u, fu))) ≤ ψ(Ω(lim sup
i−→∞

d̃(xn+1, fu)))

≤ ψ(lim sup
i−→∞

M(xn, u))− lim inf
i−→∞

φ(M(xn, u))

≤ ψ(d̃(u, fu))− φ(lim inf
i−→∞

M(xn, u)).

(33)

Therefore, φ(lim infn−→∞M(xn, u)) ≤ 0, equivalently, lim infn−→∞M(xn, u) =
0. Thus, from (32) we get u = fu and hence u is a fixed point of f .

Corollary 1 Let (X,≼, d) be a partially ordered p-complete p-metric space.
Let f : X → X be an ordered non-decreasing mapping. Suppose that there
exist k ∈ [0, 1) such that

Ω(d̃(fx, fy)) ≤ kmax

{
d̃(x, y), d̃(x, fx), d̃(y, fy), d̃(y, fx)

}
,

for all comparable elements x, y ∈ X. If there exists x0 ∈ X such that x0 ≼
fx0, then f has a fixed point provided that f is continuous, or, (X,≼, p) enjoys
the s.l.c.p..

Proof. Follows from Theorems (1) and (2) and by taking ψ(t) = t and
φ(t) = (1− k)t, for all t ∈ [0,+∞).
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Corollary 2 Let (X,≼, d) be a partially ordered p-complete p-metric space.
Let f : X → X be an ordered non-decreasing mapping. Suppose that there
exist α, β, γ, δ ∈ [0, 1) with α+ β + γ + δ ∈ [0, 1) such that

Ω(d̃(fx, fy)) ≤ αd̃(x, y) + βd̃(x, fx) + γd̃(y, fy) + δd̃(y, fx),

for all comparable elements x, y ∈ X. If there exists x0 ∈ X such that x0 ≼
fx0, then f has a fixed point provided that f is continuous, or, (X,≼, p) enjoys
the s.l.c.p..

The following corollary is an extension of Banach contraction principle in
an extended b-metric space.

Corollary 3 Let (X,≼, d) be a partially ordered p-complete p-metric space.
Let f : X → X be an ordered non-decreasing mapping. Suppose that there
exist α ∈ [0, 1) such that

sinh(d̃(fx, fy)) ≤ αd̃(x, y),

for all comparable elements x, y ∈ X. If there exists x0 ∈ X such that x0 ≼
fx0, then f has a fixed point provided that f is continuous, or, (X,≼, p) enjoys
the s.l.c.p..

Now, in order to support the usability of our results, we present the fol-
lowing examples.

Example 4 LetX = [0, 100] be equipped with the p-metric d̃(x, y) = e|x−y|2−1
for all x, y ∈ X, where Ω(x) = e2x − 1.

Define a relation ≼ on X by x ≼ y iff y ≤ x, the function f : X → X by

fx = ln(1 +
x

10
)

and the altering distance functions ψ,φ : [0,+∞) → [0,+∞) by ψ(t) = ln(1+
1
2 ln(1 + t)) and φ(t) = t

1000 . Then, we have the following:

1. (X,≼, d) is a partially ordered p-complete p-metric space.
2. f is an ordered increasing mapping.
3. f is continuous.
4. f is an ordered (ψ,φ)Ω-contractive mapping, that is,

ψ(Ω(d̃(fx, fy))) ≤ ψ(M(x, y))− φ(M(x, y))

for all x, y ∈ X with x ≼ y, where

M(x, y) = max

{
d̃(x, y), d̃(x, fx), d̃(y, fy), d̃(y, fx)

}
.
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Proof. The proof of (1), (2) and (3) is clear.
To prove (4), let x, y ∈ X with x ≼ y. So, y ≤ x. Thus, using the mean

value theorem for function ln(1 + t
10 ), we have

ψ
(
Ω(d̃(fx, fy))

)
= ln

(
1 + 1

2 ln(1 +Ω(d̃(fx, fy)))
)

= ln

(
1 + 1

2

[
ln
(
1 + e2e

[
ln

(
1+ x

10

)
−ln

(
1+

y
10

)]2
−2 − 1

)])
= [ln(1 + x

10 )− ln(1 + y
10 )]

2

≤ | x
10 − y

10 |
2

≤ 1
100 |x− y|2

≤ 1
100

[
e

∣∣∣x−y

∣∣∣2
− 1

]
≤ 1

100 [M(x, y)]
≤ ln(1 + 1

2 ln(1 +M(x, y)))− 1
1000 [M(x, y)]

= ψ(M(x, y))− φ(M(x, y)).
(34)

So, we conclude that f is a (ψ,φ)Ω-contractive mapping. Thus, all the hy-
potheses of Theorem 1 are satisfied and hence f has a fixed point. Indeed, 0
is the unique fixed point of f .

Remark 1 A subset W of a partially ordered set X is said to be well ordered
if every two elements of W are comparable. Note that in Theorems 1 and 2, f
has a unique fixed point provided that the fixed points of f are comparable.

Example 5 Let X = {0, 1, 2, 3} be equipped with the following partial order
≼:

≼:= {(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (3, 1), (3, 2), (3, 3)}.

Define the metric d̃ : X ×X → R+ by

d̃(x, y) =

{
0, x = y,

x+ y, x ̸= y
(35)

and let ρ(x, y) = sinh d̃(x, y). It is easy to see that (X, ρ) is a p-complete
p-metric space.

Define the self-map f by

f =

(
0 1 2 3
0 0 1 1

)
We see that f is an ordered increasing mapping and (X,≼, p) enjoys the s.l.c.p..

Define ψ,φ : [0,∞) → [0,∞) by ψ(t) =
√
t and φ(t) = 1

1+t2 . One can
easily check that f is a (ψ,φ)Ω-contractive mapping. Indeed, we have some
cases as follows:
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1. (x, y) = (3, 1). Then,

ψ(Ω(ρ(fx, fy))) =
√
sinh(f3 + f1)

=
√
sinh(1 + 0)

= 1.08406696917
≤ 5.22397522938− 0.00134095068

=
√
M(x, y)− 1

1+(M(x,y))2

= ψ(M(x, y))− φ(M(x, y)).

(36)

2. (x, y) = (3, 2). Then,

ψ(Ω(d̃(fx, fy))) =
√
sinh(f3 + f2)

=
√
sinh(1 + 1)

= 1.90443178083
≤ 8.6141285443− 0.00018158323

=
√
M(x, y)− 1

1+(M(x,y))2

= ψ(M(x, y))− φ(M(x, y)).

(37)

Thus, all the conditions of Theorem 2 are satisfied and hence f has a fixed
point. Indeed, 0 is the fixed point of f .

3 Existence theorem for a solution of an integral equation

Consider the integral equation

x(t) = p(t) +

∫ T

0

λ(t, r)f(r, x(r))dr, t ∈ [0, T ] (38)

where 0 < T . The purpose of this section is to give an existence theorem for a
solution of 38 that belongs toX = C(I,R) (the set of continuous real functions
defined on I = [0, T ]), via the obtained result in Theorem 2. Obviously, this
space with the p-metric given by

ρ(x, y) = e

(
max
t∈I

∣∣x(t)−y(t)
∣∣)

− 1

for all x, y ∈ X is a p-complete p-metric space with Ω(t) = et − 1.
We endow X with the partial order ≼ given by

x ≼ y ⇐⇒ x(t) ≤ y(t),

for all t ∈ I. (X,≼, ρ) is regular [25]. We will consider 38 under the following
assumptions:

(i) f, p : [0, T ]×R → R are continuous.
(ii) λ : [0, T ]×R → [0,∞) is continuous.
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(iii) There exists k ∈ (0, 1) such that for all x, y with x ≼ y

0 ≤ e

∣∣ ∫ T
0

λ(t,r)[f(r,x(r))−f(r,y(r))]dr
∣∣
− 1 ≤ k[e(y(t)−x(t)) − 1],

and ln(1 + t)− 2kt ≥ 0 for all t ∈ I.

(iv) max
t∈I

∫ T

0
|λ(t, r)|dr ≤ 1.

(v) There exists continuous function α : [0, T ] → R such that

α(t) ≤ p(t) +

∫ T

0

λ(t, r)f(r, α(r))dr.

Theorem 3 Under assumptions (i)-(v), 38 has a solution in X, where X =
C([0, T ],R).

Proof. We define F : X → X by

F (x(t)) = p(t) +

∫ T

0

λ(t, r)f(r, x(r))dr.

The mapping F is ordered increasing since, for x ≼ y

f(t, x) ≤ f(t, y),

and from λ(t, r) > 0, we have

F (x(t)) = p(t)+

∫ T

0

λ(t, r)f(r, x(r))dr ≤ p(t)+

∫ T

0

λ(t, r)f(r, y(r))dr = F (y(t)).

Now, we have

ψ
(
Ω(ρ(Fx(t), Fy(t)))

)
= ln

(
Ω(e|Fx(t)−Fy(t)| − 1) + 1

)
= ln

(
ee

∣∣Fx(t)−Fy(t)

∣∣
−1 − 1 + 1

)
≤ e

∣∣ ∫ T
0

λ(t,r)[f(r,x(r))−f(r,y(r))]dr
∣∣
− 1

≤ k[e(y(t)−x(t)) − 1]
≤ kρ(x, y)
≤ kM(x, y)
≤ ln(M(x, y) + 1)− kM(x, y)
= ψ(M(x, y))− φ(M(x, y)).

(39)

where

M(x, y) = max

{
ρ(x, y), ρ(x, Fx), ρ(y, Fy), ρ(y, Fx)

}
.

Let α be the function appearing in assumption (v). Then we get

α ≼ F (α).

Thus, from Theorem 2 by ψ(t) = ln(1 + t) and φ(t) = kt we deduce the
existence of an x ∈ X such that x = F (x).
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