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Abstract In this paper, we introduce the notion of an extended metric space
(p-metric space) as a new generalization of the concept of b-metric space. Also,
we present the concept of (¢, p)o-contractive mappings and we establish some
fixed point results for this class of mappings in ordered complete p-metric
spaces. Our results generalize several well-known comparable results in the
literature. Finally, examples support our results.
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1 Introduction

The Banach contraction principle [5] is a very powerful tool for solving prob-
lems in nonlinear analysis. Some authors generalized this interesting theorem
in different ways (see, e.g., [1,2,7,8,10,11,14,18]).

Khan et al. [17] introduced the concept of an altering distance function as
follows.

Definition 1 [17] The function ¢ : [0, +00) — [0, +00) is called an altering
distance function, if the following properties hold:
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1. ¢ is continuous and non-decreasing.
2. ¢(t) =0 if and only if t = 0.

So far, many authors have studied fixed point theorems which are based
on altering distance functions (see, e.g., [1,12,15,17,19,21,23,24]).

The concept of a b-metric space was introduced by Czerwik in [9]. After
that, several interesting results about the existence of a fixed point for single-
valued and multi-valued operators in b-metric spaces have been obtained (see,
[1,3,4,6,13,16,20,22,26]).

Definition 2 [9] Let X be a (nonempty) set and s > 1 be a given real number.
A function d : X x X — R™ is a b-metric iff for all z,y,z € X, the following
conditions hold:

(bQ) d(l‘,y) = d(y,x)7
(bs) d(z,z) < sld(z,y) +d(y, 2)]

In this case, the pair (X, d) is called a b-metric space.

A b-metric is a metric, when s = 1.

Motivated with [9], the following definitions and results will be needed in
the sequel.

Definition 3 Let X be a (nonempty) set. A function d : X x X — R* is a
p-metric iff there exists a strictly increasing continuous function {2 : [0, 00) —
[0,00) with z < £2(x) such that for all z,y,z € X, the following conditions
hold:

(p1) d(z,y) =0 iff z =y,
(p2) d(z,y) =d(y,z),
(p3) d(z,2) < 2(d(z,y) + d(y, 2)).

In this case, the pair (X, d) is called a p-metric space, or, an extended b-metric
space.

It should be noted that, the class of p-metric spaces is considerably larger
than the class of b-metric spaces, since a b-metric is a p-metric, when 2(z) = sz
while a metric is a p-metric, when 2(z) = x.

Here, we present an example to show that in general, a p-metric need not
necessarily to be a b-metric.

Ezample 1 Let (X,d) be a metric space and p(z,y) = sinhd(z,y). We show
that p is a p-metric with 2(¢) = sinh(¢) for all ¢ > 0.
Obviously, conditions (p;) and (ps2) of Definition 3 are satisfied.
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For each z,y,z € X,

p(z,y) _ _

= sinh(d(z, y)) < sinh(d(z, z) + d(z,y))
< sinh[sinh(d d(z, z)) + sinh(d(z, )] rl (1)
= sinbip(z. ) + ()

Qp(z, 2) + p(z,y))-

So, condition (ps3) of Definition 3 is also satisfied and p is a p-metric. Note
that, sinh|x — y| is not a metric on R, as we know that

sinh 5 = 74.2032105778 > 3.62686040785 + 10.0178749274 = sinh 2 + sinh 3.

Obviously, sinh|z — y| is not also a b-metric for any s > 1.

Ezample 2 Let (X,g) be a metric space and p(x,y) = eM®y) — 1. We show
that p is a p-metric with 2(t) = e’ — 1.

Obviously, conditions (p;) and (p2) of Definition 3 are satisfied.

On the other hand, for each z,y,z € X,

p(z,y)
=edl@y) 1 <e d(z,2)+d(z,y) _q
< eeg(x,z) 1+€d(z W) _q _1 (2)

— elp(z,2)+o(zy) _q
= 2(p(x,2) + p(z,y)).

So, condition (ps3) of Definition 3 is also satisfied and p is a p-metric.
In general, we have the following proposition.

Proposition 1 Let (X,c?) be a metric space with coefficient s > 1 and let

plz,y) = §(J(x7y)) where £ : [0,00) — [0,00) is a strictly increasing function

with x < &(x) and 0 = £(0). We show that p is a p-metric with Q(t) = £(t).
For each z,y,z € X,

p(z,y)

= &(d(x,y)) < &(d(x, 2) + d(2,y)) 3)
< €(€(d(x,2)) + £(d(2, y))

= Q(p(z,2) + p(z,9)).

So, p is a p-metric.
The above proposition constructs the following example:

Ezample 3 Let (X, d) be a metric Space and let p(z,y) = edl@y) sec’l(e‘;("”’y)).
Then p is a p-metric with £2(¢) = e sec™1(e?).
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Definition 4 Let (X,d) be a p-metric space. Then a sequence {z,} in X is
called: -
(a) p-convergent if and only if there exists € X such that d(x,,z) — 0,

as n — +oo. In this case, we write lim z, = x.
n—oo

(b) p-Cauchy if and only if J(a:m Tm) — 0 as n,m — +oo.
(¢) The p-metric space (X, d) is p-complete if every p-Cauchy sequence in
X p-converges.

Proposition 2 In a p-metric space (X,d), as £2(0) =0,
p1. A p-convergent sequence has a unique limit.
p2. Fach p-convergent sequence is p-Cauchy.
ps. In general, a p-metric is not continuous.

We will need the following simple lemma about the p-convergent sequences.

Lemma 1 Let (X,d) be a p-metric space with a strictly increasing continuous
function §2 : [0,00) — [0,00), and suppose that {xz,} and {y,} p-converge to
x,y, respectively. Then, we have

(22)"Yd(z,y)) < liminf d(zn, y) < limsup d(z,, yn) < 2%(d(z,y)).

n——0oQ n > 00

In particular, if x =y, then, lim,,_,d(2n,yn) = 0. Moreover, for each
z € X we have

Q_l(cz(x,z)) < liminfg(xn,z) < lim sup c?(a:n,z) < Q(d(z, 2)).

n—>:o0 n—>o00

Proof. (a) Using the p-triangular inequality, it is easy to see that

< Qd(w,20) + 2(d(T0, Yn) + d(Yn,y)))

and

A, yn) < 2(d(n, x) + 2(d(2,y) + d(y, yn)))-

Taking the lower limit as n — oo in the first inequality one has

d(z,y) < 2(Q0iminf d(zn, yn)))

n—o0

and taking the upper limit as n — co in the second inequality we have

lim sup d(w, y) < 2(2(d(,y)).

n——o0

(b) Using the p-triangular inequality, it is easy to see that

d(z,2) < 2(d(z, x,) + d(24, 2))

and

d(zp, 2) < 2(d(zn, ) + d(z, 2)).
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Taking the lower limit as n — oo in the first inequality one has

d(z,z) < 2(liminf d(z,, 2))

n—o0

and taking the upper limit as n — oo in the second inequality we have

lim sup d(x,,, z) < 2(d(x, 2)).

n—>oo

O

In this paper, we introduce the notion of generalized (1, ¢)-contractive
mapping and we establish some results in complete ordered p-metric spaces,
where 1 and @ are altering distance functions. Our results generalize several
comparable results in the literature.

2 Main results

In this section, we define the notion of (v, p)o-contractive mapping and prove
our new results.

Let (X, <,d) be an ordered p-metric space and let f : X — X be a map-
ping. Set

M(z,y) = max {J<x, y).d(a. f2). d(y. Fy).dly. fx)}- (5)

Definition 5 Let (X, <, d) be an ordered p-metric space. We say that a map-
ping f: X — X is an ordered (1, ¢)q-contractive mapping if there exist two
altering distance functions ¢ and ¢ and strictly increasing continuous function
2 :]0,00) = [0,00) with z < 2(x), for all nonnegative real number = such
that

P(R2d(fz, fy)) < b(M(z,y)) — p(M(2,y)) (6)

for all comparable elements z,y € X.
Now, let us to prove our first result.

Theorem 1 Let (X,=,d) be a partially ordered p-complete p-metric space.
Let f : X — X be an ordered non-decreasing continuous ordered (1, p)q-
contractive mapping. If there exists xo € X such that xo X fxo, then f has a
fixed point.

Proof: Let zyp € X be arbitrary. Define a sequence (z,) in X such that
Tpy1 = fap, for all n > 0. Since g X frg = z1 and f is non-decreasing, we

have 1 = fxg < x93 = fx1. Inductively, we have

To X1 X DTp D Tpgr D00
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If x,, = 41, for some n € N, then z,, = fr, and hence z,, is a fixed point
of f. So, we may assume that z,, # x,41, for all n € A/. By (6), we have

¢(d($nv xn+1)) < @Z’(Q(d(zm In+1)))

= P(2(d(frn_1, frn))) (7)
<YM (2n—1,20)) — (M (Trn-1,70)),

where

M(xnfla xn) = max g(xnflyxn)a g(xnfla fxnfl),g(xna fxn)ydv(mna fxnl)}

= max d(xnfla :L‘n); d(xnz anrl)

= max d(xn—la zn)a d(iﬁn, JUn—i—l)

From (7) and (8) and the properties of 1 and ¢, we get
(A2, Tny1)) < ¢<max {E(xnl,xn), j(xn,xnﬂ)})
go(max {J(xn_l, ), d(n, xn+1)}> (9)
< w<max {J(xn_l,xn), J(xn,xn+1)}>.

If
max {J(xn—la xn)a g(vaa xn—&—l)} = glv(xna xn-i—l)a

then by (9) we have

"/)(d(xn’ anrl)) < w(‘i(mm anrl)) - @(d(xm 1‘n+1)) (10)
< w(d(ﬂ?n’l‘nﬂ)),

which gives a contradiction. Thus,

max {glimnla .Z'n), gli(xn; xn+1)} = C/i'(xnfl; an)

Therefore (9) becomes

w(cj(xnvxrwl)) < 1/}(67(.%“733“,1)) - ap(c?(mn,l,xn)) < w(cj(mn,xn,l)) (11)

Since 1) is a non-decreasing mapping, {d(z,,Zn+1) : n € N U{0}} is a non-
increasing sequence of positive numbers. So, there exists r > 0 such that

lim d(z, Tni1) =7 (12)

n—oo

Letting n — oo in (11), we get

U(r) < ¢(r) —p(r) < o(r). (13)
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Therefore, ¢(r) = 0, and hence r = 0. Thus, we have

lim d(zn, Tny1) = 0. (14)
n— oo
Next, we show that {x,} is a p-Cauchy sequence in X. By contradiction,
there exists € > 0 for which we can find two subsequences {x,, } and {z,,} of
{zn} such that n; is the smallest index for which

ng > m; >4, d(Tm,,Tn;) > €. (15)

This means that

d(Tm,, Tn,—1) < . (16)
From (15) and using the p-triangular inequality, we get

€ S J(xj;ﬂwan) .
< “Q(Ci(xmwxmi—l) + d(xgu—lvxm)) (17)

< ‘Q(d($ﬁbi7$mi—1) + “Q(d(xmi—l’ 'l:ni_l) + d(l‘ni_l’ xTLL)))
Using (17) and taking the upper limit as i — oo, we get

(%)Y (e) < liminf d(2pm, 1, 2n, 1) (18)

11— 00

On the other hand, we have

d(xmi_17mni_1) < ‘Q(d(xmi—l’xmi) + d($mwmm‘—1))' (19)

Using (14), (16) and taking the upper limit as i — oo, we get

lim sup d(#m, 1, Tn,—1) < 2(¢). (20)

i—>00

On the other hand, we have

d(xmi I’ xni) S .Q(d(l'mL ) mni—l) + d('rni—l? J"”h)) (21)
Using (14), (15) and taking the upper limit as i — co, we get

lim sup d(am, , tn,—1) > 27 (e). (22)

1—>00

From (6), we have

Um0 )) = YO 1 S, 2) (23

< (M (@120 1)) — @M (15 Tmi1)),

where
M(xTni*:l?x’ni*l) = max Eiv(xmi,l,xm,l),(,iv(mmi,h fl'mifl)a (Fi(xnifla fxni,l),g(xni,l, fwmil)l
4)

= max J(xm1717 xni71>7 gl'(l‘mLfla xmi)a J(:I;nl*la ‘/I’.’I’Li)a J(xnifla mmL)}
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Taking the upper limit as ¢ — oo in (24) and using (14), we get

lim sup M (2,1, Tn;—1) = max{limsup d(m, 1, Tn;-1),0, 0, im sup d(xm,,, Tn,—1)} < 2(e).

(25)
So, we have
lim sup M(xmifla xmfl) < 9(5)7 (26)
11— 00
Similarly, we obtain that
(22)7Y(e) < liminf M (2, 1, %pn,_1). (27)

i—>00

Now, taking the upper limit as i — oo in (23) and using (26) and (27), we
have

P(£2(e)) < ¢(Q(11Hi§up AT, Tn;)))
< Y(limsup M (@, —1,2p,~1)) — iminf o(M (2, —1,Tn,—1))  (28)

i—>00 i —00

< B(82(6)) — p(liming M (2,1, 20, 1),
1—>00
which further implies that

e(liminf M (2, 1,2n,-1)) = 0,

1—>00
so liminf M (2,1, Zn,—1) = 0, a contradiction to (27). Thus, {z,4+1 = fz,}
11— 00
is a p-Cauchy sequence in X. As X is a p-complete space, there exists u € X
such that z,, - v as n — oo, and
lim 2,41 = lim fz, = .
n—oo n—oo
Now, as f is continuous, using the p-triangular inequality, we get

d(u, fu) < 2(d(u, frn) + d(frn, fu)).
Letting n — oo, we get
d(u, fu) < Q( lim d(u, fz,) + lim d(fa,, fu)) =0.

So, we have fu = u. Thus, u is a fixed point of f.

Note that the continuity of f in Theorem 1 is not necessary and can be
dropped.

Recall that, an ordered p-metric space (X, <, p) is said to have sequential
limit comparison property (s.l.c.p) if for every nondecreasing sequence {z,}
in X, converging to some x € X, x,, < x holds for all n € N.

Theorem 2 Under the same hypotheses of Theorem 1, without the continuity
assumption of f, assume that (X, =<,p) enjoys the s.l.c.p.. Then [ has a fived
point in X.
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Proof. Following the proof of Theorem 1, we construct an increasing se-
quence {x,} in X such that x,, — u, for some v € X. Using the assumption
s.l.c.p. on X, we have x,, < u, for all n € N. Now, we show that fu = u. By
(6), we have

(2@, ) = $(2(d(fan, fu)) (29)

Y
P(M (2, 1)) = p(M(2n, w)),

IA

where

M (xy,u) = max {g(xn,u),cz(xn,fmn),g(y, fu),c?(fon,u)}

= max {d(zn, u), d(@y, Tns1), d(u, fu), d(zns1,u)}. (30)
Letting n — oo in (30) and using Lemma 1, we get
lim sup M (@n,u) = d(u, fu). (31)
Similarly, we can obtain
lim inf M (2, u) = d(u, fu). (32)

13— 00

Again, taking the upper limit as n — oo in (29) and using Lemma 1 and (31)
we get

U(d(u, fu) = Y(2(27(d(u, fu))) < P(2(limsup d(zni1, fu)))

— 00

< Y(limsup M(zy, w)) — liminf o(M (2, u)) (33)
§—500 1—>00

< w(d(u, fu)) - p(liminf Mz, w).

Therefore, p(liminf,, o M (2., u)) < 0, equivalently, iminf,, M (z,,u) =
0. Thus, from (32) we get u = fu and hence u is a fixed point of f.

Corollary 1 Let (X, =,d) be a partially ordered p-complete p-metric space.
Let f : X — X be an ordered non-decreasing mapping. Suppose that there
exist k € [0,1) such that

Qd(fe, fy)) < kmax {éi@c, ). (e, f2), dy, Fy)., Ay, fx)},

for all comparable elements x,y € X. If there exists xg € X such that rg =<
fxo, then f has a fized point provided that f is continuous, or, (X, <,p) enjoys
the s.l.c.p..

Proof. Follows from Theorems (1) and (2) and by taking ¢(¢) = ¢ and
p(t) = (1 — k)t, for all ¢ € [0, +00).
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Corollary 2 Let (X, =,d) be a partially ordered p-complete p-metric space.
Let f : X — X be an ordered non-decreasing mapping. Suppose that there
exist a, B,7,0 € [0,1) with o+ 4+ v+ 6 € [0,1) such that

Qd(fz, fy)) < ad(z,y) + Bd(z, fr) +~d(y, fy) + dd(y, fx),

for all comparable elements x,y € X. If there exists xg € X such that g =<
fxo, then f has a fized point provided that f is continuous, or, (X, =,p) enjoys
the s.l.c.p..

The following corollary is an extension of Banach contraction principle in
an extended b-metric space.

Corollary 3 Let (X, =,d) be a partially ordered p-complete p-metric space.
Let f : X — X be an ordered non-decreasing mapping. Suppose that there
exist o € [0,1) such that

sinh(d(fz, fy)) < ad(z,y),

for all comparable elements x,y € X. If there exists xg € X such that g <
fxo, then f has a fized point provided that f is continuous, or, (X, =,p) enjoys
the s.l.c.p..

Now, in order to support the usability of our results, we present the fol-
lowing examples.

Ezample 4 Let X = [0, 100] be equipped with the p-metric J(x, y) = |
for all z,y € X, where 2(z) = €2* — 1.
Define a relation < on X by x <y iff y < z, the function f: X — X by

x
10

and the altering distance functions 1, ¢ : [0, 4+00) — [0, 4+00) by ¥ (t) = In(1 +
2In(1+1)) and ¢(t) = 1355- Then, we have the following:

. (X, =,d) is a partially ordered p-complete p-metric space.
f is an ordered increasing mapping.

. f is continuous.

. f is an ordered (4, ¢)gn-contractive mapping, that is,

B~ W N

Y(2(d(fz, fy)) < O(M(z,y)) — (M (z,y))
for all z,y € X with x <y, where

M(z,y) = max {d@,y),m Fa),dly, £y). d(y. fw)}-
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Proof. The proof of (1), (2) and (3) is clear.
To prove (4), let z,y € X with < y. So, y < z. Thus, using the mean
value theorem for function In(1 + £5), we have

v(Qd(f2, fy) = (1+ $ (1 + (d( =, 4)))) 2
=1n <1 + % [ln (1 + 62‘8[1n (H%)*l“ (H%)} -2 _ 1>]>

In(l+ &) —In(1+ £))?

IN
-

[IRVANIVAN
=
=S
+
I—=

(34)
So, we conclude that f is a (¢, p)-contractive mapping. Thus, all the hy-
potheses of Theorem 1 are satisfied and hence f has a fixed point. Indeed, 0
is the unique fixed point of f.

Remark 1 A subset W of a partially ordered set X is said to be well ordered
if every two elements of W are comparable. Note that in Theorems 1 and 2, f
has a unique fixed point provided that the fixed points of f are comparable.

Ezample 5 Let X = {0,1,2,3} be equipped with the following partial order
=:

=<:={(0,0),(1,0),(1,1),(1,2),(2,2),(3,1),(3,2),(3,3)}.
Define the metric d : X x X — R+ by

don={, 9,054 ()

and let p(x,y) = sinhd(x,y). It is easy to see that (X, p) is a p-complete
p-metric space.
Define the self-map f by

0123
f= (O 01 1>
We see that f is an ordered increasing mapping and (X, <, p) enjoys the s.l.c.p..
Define 1, ¢ : [0,00) — [0,00) by () = vt and ¢(t) = H% One can

easily check that f is a (v, p)gp-contractive mapping. Indeed, we have some
cases as follows:
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1. (z,y) = (3,1). Then,

Y(2(p(fr, fy))) = +/sinh(f3 + f1)

= y/sinh(1 + 0)

— 1.08406696917

< 5.22397522938 — 0.00134095068
M(z,y) - T
V(M (z,y)) — (M (z,y)).

2. (z,y) = (3,2). Then,

P(2(d(fz, fy))) = /sinh(f3 + f2)
= y/sinh(1 + 1)
= 1.90443178083
< 8.6141285443 — 0.00018158323

= VM@, y) -ty
= (M (z,y)) — p(M(z,y)).

Thus, all the conditions of Theorem 2 are satisfied and hence f has a fixed
point. Indeed, 0 is the fixed point of f.

3 Existence theorem for a solution of an integral equation

Consider the integral equation

z(t) = p(t) +/0 A, r) f(r,z(r))dr, te 0,7 (38)

where 0 < T'. The purpose of this section is to give an existence theorem for a
solution of 38 that belongs to X = C(I,R) (the set of continuous real functions
defined on I = [0,77]), via the obtained result in Theorem 2. Obviously, this
space with the p-metric given by

(max ’x(t)fy(t)|)

p(.’ﬂ,y):e el -1

for all z,y € X is a p-complete p-metric space with 2(t) = ¢t — 1.
We endow X with the partial order < given by

r 2y = x(t) <yt),

for all t € I. (X, <, p) is regular [25]. We will consider 38 under the following
assumptions:

(7) f,p:[0,T] x R = R are continuous.
(#) A:[0,T] x R — [0,00) is continuous.
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(#it) There exists k € (0,1) such that for all z,y with z <y
0 < el AN~ FraeDdr] g < proo=e0) _ )

and In(1+1¢) — 2kt >0 forallt € I.
(iv) max fOT IA(t,7)|dr < 1.
(v) There exists continuous function « : [0,7] — R such that

T
a(t) < p(t) —I—/O A(t, ) f(r,a(r))dr.

Theorem 3 Under assumptions (i)-(v), 38 has a solution in X, where X =
c([0,T],R).

Proof. We define F': X — X by
F(z(t)) = p(t) + /0 A, ) f(r,z(r))dr.

The mapping F' is ordered increasing since, for r <y
f(t,x) < f(ty),
and from A(¢,r) > 0, we have
T T
Fa(t) = ple)+ [ At (ra(r)dr <p)+ [ MG fry(r)dr = Fy(o)
0 0
Now, we have

o(2p(Fa(t), Fy®)) = (2(F=O-Fo0l —1) 4 1)

—In (ee rermrue] Ly 1+ 1)

< I At = f eyl

< E[ew®—=®) 1] (39)
< kp(z,y)

< kM(z,y)

<In(M(z,y)+1) — kM(x,y)
= ¢(M($ay)) - (,O(M(.Z’,y)).

where
M (z,y) = max {p(mx y), p(x, Fx), py, Fy), ply, Fw)}-
Let a be the function appearing in assumption (v). Then we get
a = F(a).

Thus, from Theorem 2 by ¢(t) = In(1 + ¢) and ¢(t) = kt we deduce the
existence of an z € X such that x = F(z). O
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