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Abstract As with most computer science problems, representation of the
data is the key to efficient and effective solutions. Piecewise linear representa-
tion has been used for the representation of the data. This representation has
been used by various researchers to support clustering, classification, indexing
and association rule mining of time series data. A variety of algorithms have
been proposed to obtain this representation, with several algorithms having
been independently rediscovered several times. In this paper, we examine the
techniques and then introduce the best-known algorithm.
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1 Introduction

In recent years, there has been an explosion of interest in mining time series
databases. As with most computer science problems, representation of the
data is the key to efficient and effective solutions. representations of time
series have been used, from Fourier Transforms [1,2], Wavelets [3], Symbolic
Mappings [4-6] and Piecewise Linear Representation (PLR) [7,8]. Piecewise
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Linear Representation makes the storage, transmission and computation of
the data more efficient . PLR refers to the approximation of a time series T, of
length n, with K straight lines. Figure 1 contains two examples. Specifically, in
the context of data mining, the piecewise linear representation has been used
to:

e Support fast exact similarly search [2].

e Support novel distance measures for time series, including ”fuzzy queries”

[9,10], weighted querie[11], multi-resolution queries [12,13], dynamic time
warping [14] and relevance feedback [15].

e Support concurrent mining of text and time series [16].

e Support novel clustering and classification algorithms[11].

e Support change point detection [17].

In this work, we will refer to these types of algorithm, which input a time
series and return a piecewise linear representation, as segmentation algo-
rithms [9]. The segmentation problem can be framed in several ways.

e Given a time series T, produce the best representation using only K seg-

ments.

e Given a time series T, produce the best representation such that the max-

imum error for any segment does not exceed some user specified threshold,
mMAax-error.

e Given a time series T, produce the best representation such that the com-
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bined error of all segments is less than some user-specified threshold, total-
max-error.

It should be noted that algorithms do not support all of these specifications.
Data mining researchers, who needed to produce a piecewise linear approx-
imation, have typically either independently rediscovered an algorithm or
used an approach suggested in related literature. For example,from the
fields of cartography or computer graphics [18].
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Fig. 1 Two time series and their piecewise linear representation. A) Space Shuttle Teleme-
try. B) Electrocardiogram (ECG)
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In this paper, we review the three major segmentation approaches in the
literature and provide an extensive empirical evaluation on a very heteroge-
neous collection of data-sets from Iran-Khodro, Darusazi-Osveh, Bank-Day
and Overall-Index share. We explain the approaches and compare them.

2 Background

In this section, we describe the three major approaches to time series segmen-
tation in detail. Almost all the algorithms have 2 and 3 dimensional analogues,
which ironically seem to be better understood. most time series segmentation
algorithms can be grouped into one of the following cases with different im-
plementation details:

e Sliding Windows: A segment is grown until it exceeds some error bound.
The process repeats with the next data point not included in the newly
approximated segment.

e Top-Down: The time series is recursively partitioned until some stopping
criteria is met.

e Bottom-Up: Starting from the finest possible approximation, segments are
merged until some stopping criteria is met.

We want to approximate a time series with straight lines, We use two
methods for this.

e Linear Interpolation: Here the approximating line for the subsequence T[a :
b] is simply the line connecting t, , and t,. This can be obtained in constant
time.

e Linear Regression: Here the approximating line for the subsequence T[a:b]
is taken to be the best fitting line in the least squares sense[9]. This can be
obtained in time linear in the length of segment.

The two techniques are illustrated in figure 2. Linear interpolation tends
to closely align the endpoint of consecutive segments, giving the piecewise
approximation a ”smooth” look. In contrast, piecewise linear regression can
produce a very disjointed look on some data-sets. The aesthetic superiority of
linear interpolation, together with its low computational complexity has made
it the technique of choice in computer graphic applications [18]. However, the
quality of the approximating line, in terms of Euclidean distance, is generally
inferior to the regression approach.
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Fig. 2 Two 10-segment approximations of electrocardiogram data
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2.1 The sliding window algorithm

In the last decade, the theoretical study of the sliding window model was devel-
oped to advance applications with very large input and time-sensitive output.
In some practical situations, input might be seen as an ordered sequence, and
it is useful to restrict computations to recent portions of the input. Examples
include the analysis of recent tweets and time series of the stock market [19].
introduced the sliding window model that assumes that the input is a stream
(i.e., the ordered sequence) of data elements and divides the data elements
into two categories: active elements and expired elements. The Sliding Win-
dow algorithm is attractive because of its great simplicity, intuitiveness and
particularly the fact that it is an online algorithm [20]. Depending on the er-
ror measure used, there may be other optimizations possible. Vullings et al.
noted that since the residual error is monotonically non-decreasing with the
addition of more data points, one does not have to test every value of i from
2 to the final chosen value [21]. They suggest initially setting ¢ to s, where
s is the mean length of the previous segments. If the guess was pessimistic
then the algorithm continues to increment i as in this algorithm. Otherwise
they begin to decrement i until the measured error is less than max_error.
This optimization can greatly speed up the algorithm if the mean length of
the segment is large in relation to the standard deviation of their length. The
pseudocode for the algorithm is shown in figure 3.

function PLR_sliding_window(input,user_def_er)

global resulti;
global counteri;
result1(1)=1; resulti (length(result1))=1;
al=1;
for i=2:length(result1)
bi=i;
x1=al:bi;
di=input(x1);
ri=polyfit(x1,d1,1);
y1=r1(1)*x1+r1(2);
el=(sart(sum ((y1-d1).~2}}))/length(d1);
if el>user_def_er
al=bi-1;
resulti(bi-1)=1;
end
oounterl=counterl+1;
end

Fig. 3 The generic Sliding Window algorithm

2.2 The top-down algorithm

The Top-Down algorithm works by considering every possible partitioning of
the times series and splitting it at the best location. Both subsections are
then tested to see if their approximation error is below some user-specified
threshold. If not, the algorithm recursively continues to split the subsequences
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until all the segments have approximation errors below the threshold. The
pseudocode for the algorithm is shown in figure 4. Variations on the Top-Down
algorithm (including the 2— dimensional case)was independently introduced in
several fields in the early 1970 s. In cartography, it is known as the Douglas-
Peucker algorithm [22]; in image processing, it is known as Ramers algorithm
[23]. Most researchers in the machine learning/data mining community are
introduced to the algorithm in the classic text book by Duda and Harts, which
calls it ”Iterative End Points Fits” [23]. In the data mining community, the
algorithm has been used by [13] to support a framework for mining sequence
databases at multiple abstraction levels. Shatkay and Zdonik use it to support
approximate queries in time series databases [10].

function PLR_top_down(N,M,input,user_def_er)
global resulti;
global counterl;

a=1;
for i=N-+4:M-4
x1=N:i;
x2=i:M;
datal=input(x1);
data2=input(x2);
r1=polyfit(x1,datal,1);
r2=polyfit(x2,data2,1);
y1=r1(1)*x1+r1(2);
y2=r2(1)*x2+r2(2);
erl(cr)=(sart(sum ((y1-datal).”2)))/length(datal);
er2(cr)=(sqrt(sum ((y2-data2).”2)))/length(data2);
so(cr)=i;
a=a+1;
counterl=counteri+1;
end

Fig. 4 The top-down algorithm

On real world data-sets with any amount of noise, the approximation is
greatly over fragmented. Lavrenko et al. uses the Top-Down algorithm to sup-
port the concurrent mining of text and time series [16]. They attempt to
discover the influence of news stories on financial markets. Their algorithm
contains some interesting modifications including a novel stopping criteria
based on the t-test. Finally Smyth and Ge use the algorithm to produce a
representation which can support a Hidden Markov Model approach to both
change point detection and pattern matching.

2.3 The bottom-up algorithm

The Bottom-Up algorithm is the natural complement to the Top-Down algo-
rithm. The algorithm begins by creating the finest possible approximation of
the time series, so that n/2 segments are used to approximate the n—length
time series. Next, the cost of merging each pair of adjacent segments is cal-
culated, and the algorithm begins to iteratively merge the lowest cost pair
until a stopping criteria is met. When the pair of adjacent segments ¢ and
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i + [ are merged, the algorithm needs to perform some bookkeeping. First,
the cost of merging the new segment with its right neighbor must be calcu-
lated. In addition, the cost of merging the i — 1 segments with its new larger
neighbor must be recalculated. The pseudocode for the algorithm is shown in
figure 5. Two and three-dimensional analogues of this algorithm are common

function PLR_bottom_up(input,user_def_er)
global resulti;
global counteri;
while(1)
dear al; dear el; clear si;
al=find(result1);
if length(a1)<3, break; end
a=1;
for i=1:length(al)-2
bl=ail(i); b2=al(i+2);
x1=b1:b2;
di=input(x1);
ri=polyfit(x1,d1,1);
y1=r1(1)*x1+r1(2);
el{cr)=(sqrt(sum ((y1-d1).”2)))/length(d1);
sl(cr)=al(i+1);
a=a+l;
counterl=counter1+1;
end

Fig. 5 The bottom-up algorithm

in the field of computer graphics where they are called decimation methods
[18]. In data mining, the algorithm has been used extensively by two of the
current authors to support a variety of time series data mining tasks [11,15].
In medicine, the algorithm was used by Hunter and McIntosh to provide the
high level representation for their medical pattern matching system [16].

3 Empirical comparison of the major segmentation algorithms

In this section, we will provide an extensive empirical comparison of the three
major algorithms. It is possible to create artificial data-sets that allow one of
the algorithms to achieve zero error (by any measure), but forces the other
two approaches to produce arbitrarily poor approximations the .

In contrast, testing on purely random data forces the all algorithms to
produce essentially the same results. To overcome the potential for biased
results, we tested the algorithms on a very diverse collection of data-sets.
Figures 6, 7 and 8 illustrate the Iran-Khodro data-sets used in the experiments.

4 Conclusions
We have carried out the first extensive review and empirical comparison of

time series segmentation algorithms from a data mining perspective. We have
shown the most popular approach, Sliding Windows, generally produces very
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Fig. 6 Iran-Khodro- Sliding window
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poor results, and that while the second most popular approach, Top-Down, can
produce reasonable results, it does not scale well. In contrast, the least well
known, Bottom-Up, approach produces excellent results and scales linearly

with the size of the data-set.

Iran-Khodro | Darusazi-Osveh | Bank-Dey | Overall-Index
Topdown 0.0056958 0.0026541 0.0033911 0.0031629
Bottomup 0.0056968 0.0041389 0.0036852 0.0029973
Slidingwindow 0.0027282 0.0042957 0.0031934 0.0022434
Table 1. Total error
Iran-Khodro | Darusazi-Osveh | Bank-Dey | Overall-Index
Topdown 14 29 23 25
Bottomup 4 9 33 39
Slidingwindow 29 15 48 46

Table 2. Number of break points
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Fig. 8 Iran-khodro- Bottom up

Iran-Khodro | Darusazi-Osveh | Bank-Dey | Overall-Index
Topdown 436 2179 1023 1426
Bottomup 4002 3977 3509 3302
Slidingwindow 180 180 180 180
Table 8. Total runs (number of approximation)
Iran-Khodro | Darusazi-Osveh | Bank-Dey | Overall-Index
Topdown 1.763447 8.085701 4.083690 4.202938
Bottomup 7.946990 7.066469 6.116836 3.778965
Slidingwindow 0.403124 0.450311 0.433831 0.234717
Table 4. Total time (seconds)
0.001 0.005 0.01 0.02 0.04 0.06 0.08 0.1 0.5
Topdown 0.0029084 | 0.002908 | 0.0056958 | 0.019336 | 0.019336 | 0.019336 | 0.019336 | 0.019336 | 0.019336
Bottomup 0.0014275 | 0.0014741 | 0.0056968 | 0.019632 | 0.019632 | 0.019632 | 0.019632 | 0.019632 | 0.019632
Slidingwindow | 0.0000386 | 0.0004905 | 0.0027282 | 0.010543 | 0.229937 | 0.019632 | 0.019632 | 0.019632 | 0.019632

Table 5. Effect of user defined error on total error according to Iran-Khodro share

0.001 | 0.005 | 0.01 | 0.02 | 0.04 | 0.06 | 0.08 | 0.1 | 0.5
Topdown 32 31 14 2 2 2 2 2 2
Bottomup 90 74 4 1 1 1 1 1 1
Slidingwindow | 159 103 29 12 3 1 1 1 1

Table 6. Effect of user defined error on total break points according to Iran-Khodro share
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