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1 Introduction

Consider fractional differential equation with the boundary condition

Dαy(t) = F (t, y(t)), (1)

ay(0) + by(T ) = c. (2)

Let Y be a normed space and I = [0, T ] be a given interval. Assume that for
a continuously differentiable function f : I −→ Y satisfying fractional differ-
ential inequality ‖cDαf(t) − F (t, f(t))‖ ≤ ε for all t ∈ I and for some ε > 0,
where cDα is the Caputo fractional derivative of order α ∈ (0, 1), there exists
a solution f0 : I −→ Y of the fractional boundary value problem (1) and (2)
such that ‖f(t) − f0(t)‖ ≤ KεEq for all t ∈ I. Then , we say that the above
fractional boundary value problem (1) and (2) has the Mittag-Leffler-Hyers-
Ulam stability. If the above statement is also true when we replace ε andKε by

∗Corresponding author
V. Kalvandi
Department of Mathematics, Faculty of Mathematics Sciences, University of Razi, Kerman-
shah, Iran.
E-mail: vida.kalvandi@yahoo.com

c© 2018 Damghan University. All rights reserved. http://gadm.du.ac.ir/



22 Vida Kalvandi

ϕ(t) and Φ(t), where ϕ,Φ : I −→ [0,∞) are functions not depending on f and
f0 explicitly, then we say that the corresponding differential equation has the
Mittag-Leffler-Hyers-Ulam-Rassias stability. Fractional differential equations
is the area of concentration of recent research and there has been significant
progress in this area. However, the concept of fractional derivative is not new
and is very much as old as differential equations. In 1695, L. Hospital raised
the question about fractional derivative in a letter written to Leibniz and re-
lated his generalization of differentiation.
Recently, the differential equations of fractional order has proved to be a valu-
able tools in the modeling of many phenomena in various fields of science
and engineering. Indeed, we can find many applications in electromagnetic,
control, electrochemistry etc. For more details on this area, one can see the
monographs of Kilbas et al. [9], Miller and Ross [10], I. Podulbny [17], Ben-
chora [2] and the references therein.
In this paper, we will prove Mittag-Leffler-Hyers-Ulam stability and Mittag-
Leffler-Hyers-Ulam-Rassias stability of fractional differential equation of (1)
with the boundary condition (2).

2 Preliminaries

In this section, we give some basic definition and theorems which we used to
prove the results.

Definition 1 For a nonempty set X , we introduce the definition of the gen-
eralized metric on X . A function d : X×X −→ [0,+∞] is called a generalized
metric on X if and only if satisfies

(A1) d(x, y) = 0 if and only if x = y;
(A2) d(x, y) = d(y, x) for all x, y ∈ X ;
(A3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The above concept differs from the usual concept of a complete metric
space by the fact that not every two points in X have necessarily a finite
distance. One might call such a space a generalized complete metric space.

We now introduce one of the fundamental results of Banach fixed point theo-
rem in a generalized complete metric space.

Theorem 1 Let (X, d) be a generalized complete metric space. Assume that
Λ : X −→ X is a strictly contractive operator with the Lipschitz constant
L < 1. If there exists a nonnegative integer K such thatd(Λk+1x, Λkx) < ∞
for some x ∈ X, then the following are true:

(a) The sequence Λnx convergence to a fixed point x∗ of Λ;
(b) x∗ is the unique fixed point of Λ in

X∗ = {y ∈ X |d(Λkx, y) < ∞};

(c) If y ∈ X∗, then

d(y, x∗) ≤
1

1− L
d(Λy, y).
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Definition 2 [2] The fractional order integral of the function h ∈ L1([a, b],R+)
of order α ∈ R+ is defined by

Iαa h(t) =
1

Γ (α)

∫ t

a

(t− s)α−1h(s)ds,

where Γ is the gamma function.

Definition 3 [2] For a function h given on the interval [a, b], the α-th Riemann-
Liouville fractional order derivative of h, is defined by

(Dα
ah)(t) =

1

Γ (n− α)
(
d

dt
)n

∫ t

a

(t− s)n−α−1h(s)ds.

Here n = [α] + 1 and [α] denotes the integer part of α.

Definition 4 [2] For a function h given on the interval [a, b], the Caputo
fractional order derivative of h, is defined by

(cDα
ah)(t) =

1

Γ (n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds.

Here n = [α] + 1 and [α] denotes the integer part of α.

Definition 5 [2] A function y ∈ C(j,R) is said to be a solution of (1)-(2) if
y satisfies the equation cDαy(t) = f(t, y(t)) on J, and the condition ay(0) +
by(T ) = c

Lemma 1 [2] Let 0 < α < 1 and let f : [0, T ] −→ R be continuous. A function
y ∈ C(J,R) is a solution of the fractional integral equation

y(t) =

1

Γ (α)

∫ t

0

(t− s)α−1f(s, y(s))ds−
1

a+ b
[

1

Γ (α)

∫ T

0

(T − s)α−1f(s, y(s))ds− c]

if and only if y is a solution of the fractional boundary value problem
cDαy(t) = f(t, y(t)), t ∈ [0, T ]

ay(0) + by(T ) = c.

Theorem 2 [19, Theorem 1] Suppose that â is a nonnegative function locally
integrable on [0,∞) and ĝ(t) is a nonnegative, nondecreasing continuous func-
tion defined on ĝ(t) ≤ M, t ∈ [0,∞), and suppose u(t) is nonnegative and
locally integrable on [0,∞) with

u(t) ≤ â(t) + ĝ(t)

∫ t

0

(t− s)q−1u(s)ds, t ∈ [0,∞).

Then

u(t) ≤ â(t)

∫ t

0

[

∞∑
n=1

(ĝ(t)γ(q))n

Γ (nq)
(t− s)nq−1â(s)]ds, t ∈ [0,∞).

Remark 1 [19] Under the hypothesis of Theorem 2, let â(t) be a nondecreasing
function on [0,∞). Then we have u(t) ≤ â(t)Eq [ĝ(t)Γ (q)tq], where Eq is the

Mittag-Leffler function defined by Eq(z) =

∞∑
k=0

zk

Γ (kq + 1)
, z ∈ C.
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3 Mittag-Leffler-Hyers-Ulam-Rassias Stability

Here, we prove the Mittag-Leffler-Hyers-Ulam-Rassias Stability of the frac-
tional differential equation (1) with the boundary condition (2) in the interval
[0, T ] via Theorem 1.

Theorem 3 Let I = [0, T ] be a closed interval. Let K,P, and L be positive
constants with 0 < KPL < 1. Assume that F : I × R −→ R is a continuous
function which satisfies the standard Lipschitz condition

|F (t, y)− F (t, z)| ≤ L|y − z| (3)

for any t ∈ I and y, z ∈ R. If a continuously differential function y : I −→ R

satisfies
|cDαy(t)− F (t, y(t))| ≤ ϕ(t) (4)

for all t ∈ I, where ϕ : I −→ (0,∞) is a continuous function with

|
1

Γ (α)

∫ t

0

(t− s)α−1ϕ(τ)dτ | ≤ Kϕ(t) (5)

for all t ∈ I,

(

∫ t

0

(ϕ(τ))
1
p dτ)p ≤ Mϕ(t) (6)

then, there exists unique continuous function y0 : I −→ R such that

y0(t) =
1

Γ (α)

∫ t

0

(t−s)α−1F (s, y0(s))ds−
b

(a+ b)Γ (α)

∫ T

0

(T−s)α−1F (s, y0(s))ds

(7)

+
c

a+ b

and

|y(t)− y0(t)| ≤
Mϕ(t)Eα(t)

1−KPL
(8)

Proof Let us define a set X of all continuous functions f : I −→ R by

X = {f : I −→ R | f is a continuous function} (9)

similar to Theorem 3.1 of Jung S-M [7], we introduce a generalized complete
metric on X as follows

d(f, g) = inf{C ∈ [0,∞] | |f(t)− g(t)| ≤ Cϕ(t) for all t ∈ I}. (10)

define an operator Λ : X −→ X by
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(Λf)(t) =
1

Γ (α)

∫ t

0

(t−s)α−1F (s, f(s))ds−
b

(a+ b)Γ (α)

∫ T

0

(T−s)α−1F (s, f(s))ds

(11)

+
c

a+ b

for all f ∈ X. It is easy to see that Λ is well defined, since F and f are
continuous functions.
To achieve our aim, we need to prove that Λ is strictly contractive on X . For
any f, g ∈ X, let Cfg ∈ [0,∞] be an arbitrary constant with d(f, g) ≤ Cfg,

that is by (10) we have

|f(t)− g(t)| ≤ Cfgϕ(t) (12)

for any t ∈ I. It then follows from (3), (5), (10), (11) and (12) that

|(Λf)t− (Λg)t| = |
1

Γ (α)

∫ t

0

(t− s)α−1[F (s, f(s))− F (s, g(s))]ds

−
b

(a+ b)Γ (α)

∫ T

0

(T − s)α−1[F (s, f(s))− F (s, g(s))]ds|

≤
1

Γ (α)

∫ t

0

(t− s)α−1|F (s, f(s))− F (s, g(s))|ds

−
b

(a+ b)Γ (α)

∫ T

0

(T − s)α−1|F (s, f(s))− F (s, g(s))|ds

≤
L

Γ (α)

∫ t

0

(t−s)α−1|f(s)−g(s)|ds−
bL

(a+ b)Γ (α)

∫ T

0

(T−s)α−1|f(s)−g())|ds

≤
L

Γ (α)
Cfg

∫ t

0

(t− s)α−1ϕ(s)ds −
bL

(a+ b)Γ (α)
Cfg

∫ T

0

(T − s)α−1ϕ(s)ds

≤ KPLCfgϕ(t)

for all t ∈ I. that is,

d(Λf,Λg) ≤ KLPCfg.

Hence we can conclude that

d(Λf,Λg) ≤ KLPd(f, g)

for all f, g ∈ X. where we note that 0 < KLP < 1. It follows from (9) and
(11) that for an arbitrary g0 ∈ X , there exists a constant 0 < C < ∞ with

|(Λg0)(t)− g0(t)| = |
1

Γ (α)

∫ t

0

(t− s)α−1F (s, f(s))ds
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−
b

(a+ b)Γ (α)

∫ T

0

(T − s)α−1F (s, f(s))ds+
c

a+ b
− g0(t)| ≤ Cϕ(t)

for all t ∈ I since F (t, g0(t)) and g0(t) are bounded on I and mint∈I ϕ(t) > 0.
Thus (10) implies that

d(Λg0, g0) < ∞ (13)

Therefore, Theorem 1 (a) implies that there exists a continuous function y0 :
I −→ R such that Λng0 −→ y0 in (X, d) as n −→ ∞ and such that y0 = Λy0
that is y0 satisfies equation (6) for any t ∈ I. If g ∈ X, then g0 and g are
continuous functions defined on a compact interval I. Hence, there exists a
constant Cg > 0 with |g0(t)− g(t)| ≤ Cgϕ(t) for all x ∈ I.

This implies that d(g0, g) < ∞ for every g ∈ X. or equivalently {g ∈ X |
d(g0, g) < ∞} = X . Therefore, according to Theorem 1 (b) y0 is a unique
continuous function with the property (7). Furthermore, it follows from (4)
that

−ϕ(t) ≤c Dα
a+y(t)− F (t, y(t)) ≤ ϕ(t), (14)

for all t ∈ I. If we integrate each term of the above inequality and substitute
the boundary conditions we obtain

|y(t)−
1

Γ (α)

∫ T

0

(T − s)α−1F (s, y(s))ds

−
b

(a+ b)Γ (α)

∫ t

0

(t− s)α−1F (s, y(s))ds+
c

a+ b
| ≤

1

Γ (α)

∫ t

0

(t− s)α−1ϕ(s)ds

≤
1

Γ (α)
(

∫ t

0

(t− s)
α−1

1−p ds)1−p(

∫ t

0

(ϕ(s))
1
p ds)p

≤
1

Γ (α)
(
t
α−1

1−p

α−p
1−p

)1−pMϕ(t) ≤ Mϕ(t)Eα(t)

for any t ∈ I.

Thus by (5) and (11) we get |y(t) − (Λy)(t)| ≤ Mϕ(t)Eα(t) for each t ∈ I,

which implies that

d(y, Λy) ≤ Mϕ(t)Eα(t) (15)

Finally Theorem 1 (c) together with (15) implies that

d(y, y0) ≤
1

1− LKP
d(Λy, y) ≤

Mϕ(t)Eα(t)

1− LKP
.

4 Mittag-Leffler-Hyers-Ulam Stability of the first type

In this section, we prove the Mittag-Leffler-Hyers-Ulam Stability of fractional
differential equation (1) with the boundary condition (2).
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Theorem 4 Let I = [0, T ] be a closed interval and let r > 0 be a positive
constant with 0 ≤ t ≤ r. Let F : I × R −→ R be a continuous function which
satisfies the Lipschitz condition (3) for all t ∈ I and y, z ∈ R, where L is

a constant with 0 <
LPrα

Γ (α+ 1)
< 1. If a continuously differentiable function

y : I −→ R satisfies the differential inequality

|cDα
a+y(t)− F (t, y(t))| ≤ εEα(t

α) (16)

for all t ∈ I, and for some ε ≥ 0,
then there exists unique continuous function y0 : I −→ R satisfying equa-

tion (7) and

|y(t)− y0(t)| ≤
Γ (α+ 1)

Γ (α+ 1)− LPrα
εEα(t

α) (17)

Proof First we define a set X of all continuous functions f : I −→ R by

X = {f : I −→ R | f is a continuous function}

and introduce a generalized complete metric on X as follows

d(f, g) = inf{C ∈ [0,∞] | |f(t)− g(t)| ≤ C for all t ∈ I}.

define an operator Λ : X −→ X by

(Λf)(t) =
1

Γ (α)

∫ t

0

(t−s)α−1F (s, f(s))ds−
b

(a+ b)Γ (α)

∫ T

0

(T−s)α−1F (s, f(s))ds

(18)

+
c

a+ b

for all f ∈ X. We now assert that Λ is strictly contractive on X. For any
f, g ∈ X, let Cfg ∈ [0,∞] be an arbitrary constant with d(f, g) ≤ Cfg, that
is, let us assume that

|f(t)− g(t)| ≤ Cfg (19)

for any t ∈ I. It then follows from (3), (18) and (19) that

|(Λf)t− (Λg)t| = |
1

Γ (α)

∫ t

0

(t− s)α−1[F (s, f(s))− F (s, g(s))]ds

−
b

(a+ b)Γ (α)

∫ T

0

(T − s)α−1[F (s, f(s))− F (s, g(s))]ds|

≤
1

Γ (α)

∫ t

0

(t− s)α−1|F (s, f(s))− F (s, g(s))|ds

−
b

(a+ b)Γ (α)

∫ T

0

(T − s)α−1|F (s, f(s))− F (s, g(s))|ds

≤
L

Γ (α)

∫ t

0

(t−s)α−1|f(s)−g(s)|ds−
bL

(a+ b)Γ (α)

∫ T

0

(T−s)α−1|f(s)−g())|ds
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≤
L

Γ (α)
Cfg

∫ t

0

(t− s)α−1ds−
bL

(a+ b)Γ (α)
Cfg

∫ T

0

(T − s)α−1ds

≤ LCfg[
tα

αΓ (α)
−

bTα

(a+ b)αΓ (α)
]

≤ LCfg[
rα

αΓ (α)
−

brα

(a+ b)αΓ (α)
]

≤
LCfgr

α

Γ (α+ 1)
[

a

a+ b
] ≤

LPCfgr
α

Γ (α+ 1)

for all t ∈ I. that is,

d(Λf,Λg) ≤
LPrα

Γ (α+ 1)
.

Hence we can conclude that

d(Λf,Λg) ≤
LPrα

Γ (α+ 1)
d(f, g)

for all f, g ∈ X. where we note that 0 <
LPrα

Γ (α+ 1)
< 1.

Analogously to the proof of Theorem 3, we can show that each g0 ∈ X satisfies
the property d(Λg0, g0) < ∞.

Therefore, Theorem 1 (a) implies that there exists a continuous function y0 :
I −→ R such that Λng0 −→ y0 in (X, d) as n −→ ∞ and such that y0 = Λy0
that is y0 satisfies equation (6) for any t ∈ I. If g ∈ X, then g0 and g are
continuous functions defined on a compact interval I. Hence, there exists a
constant C > 0 with |g0(t)− g(t)| ≤ C for all t ∈ I.

This implies that d(g0, g) < ∞ for every g ∈ X. or equivalently {g ∈ X |
d(g0, g) < ∞} = X. Therefore, according to Theorem 1 (b) y0 is a unique
continuous function with the property (7). Furthermore, it follows from (16)
that

−εEα(t
α) ≤c Dα

a+y(t)− F (t, y(t)) ≤ εEα(t
α), (20)

for all t ∈ I. If we integrate each term of the above inequality and substitute
the boundary conditions, we obtain

|y(t)−
1

Γ (α)

∫ T

0

(T − s)α−1F (s, y(s))ds

−
b

(a+ b)Γ (α)

∫ t

0

(t−s)α−1F (s, y(s))ds+
c

a+ b
| ≤

ε

Γ (α)

∫ t

0

(t−s)α−1Eα(s
α)ds

≤

∞∑
k=o

ε

Γ (α)Γ (kα+ 1)

∫ t

0

(t− s)α−1skαds

≤
∞∑
k=o

εt(k+1)α

Γ (α)Γ (kα+ 1)

∫ 1

0

(1− s)α−1skαds
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≤

∞∑
k=o

εt(k+1)α

Γ (α)Γ (kα+ 1)

Γ (α)Γ (kα+ 1)

Γ (α+ (kα+ 1))
≤ εEα(t

α)

for any t ∈ I. If we integrate each term of the above inequality and applying
the boundary conditions, then we have

|(Λy)(t)− y(t)| ≤ εEα(t
α)

for any t ∈ I, that is, it holds that d(y, Λy) ≤ εEα(t
α) It now follows from

Theorem 1 (c) that

d(y, y0) ≤
1

1−
LPrα

Γ (α+ 1)

d(Λy, y) ≤
Γ (α+ 1)

Γ (α+ 1)− LPrα
εEα(t

α).

which implies the validity of (17) for each t ∈ I.

5 Mittag-Leffler-Hyers-Ulam Stability of the second type

Definition 6 Equation (1) is Mittag-Leffler-Hyers-Ulam stable of the second
type, with respect to Eα, if for every ε > 0 and solution y of the following
equation

|y(t)−
1

Γ (α)

∫ T

0

(T−s)α−1F (s, y(s))ds−
b

(a+ b)Γ (α)

∫ t

0

(t−s)α−1F (s, y(s))ds+
c

a+ b
|

(21)

≤
εrα

Γ (α+ 1)

there exists a solution y0 ∈ (C(I,R)) of equation (1) with

|y(t)− y0(t)| ≤ MEα(Ctα)

for all t ∈ I and C ∈ R.

Theorem 5 Let I = [0, T ] be a closed interval and let r > 0 be a positive
constant with 0 ≤ t ≤ r. Let F : I × R −→ R be a continuous function which
satisfies the Lipschitz condition 3 for all t ∈ I and y, z ∈ R, where L is a

constant that M = 2εEα(t
α)−

bLrα

Γ (α+ 1)(a+ b)
. Then equation (1) is Mittag-

Leffler-Hyers-Ulam stable of the second order type.

Proof Let y ∈ C(I < R) satisfy the inequality (21). Let us denote by y0 ∈
C(I,R) the unique of solution to (1)-(2).
We have

|y(t)− y0(t)| = |y(t)−
1

Γ (α)

∫ T

0

(T − s)α−1F (s, y(s))ds
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−
b

(a+ b)Γ (α)

∫ t

0

(t− s)α−1F (s, y(s))ds+
c

a+ b

+
1

Γ (α)

∫ T

0

(T − s)α−1F (s, y(s))ds

−
b

(a+ b)Γ (α)

∫ t

0

(t− s)α−1F (s, y(s))ds−
c

a+ b

−
1

Γ (α)

∫ T

0

(T − s)α−1F (s, y0(s))ds

−
b

(a+ b)Γ (α)

∫ t

0

(t− s)α−1F (s, y0(s))ds +
c

a+ b

+
1

Γ (α)

∫ T

0

(T − s)α−1F (s, y0(s))ds

−
b

(a+ b)Γ (α)

∫ t

0

(t− s)α−1F (s, y0(s))ds−
c

a+ b
− y0(t)|

≤ 2εEα(t
α) +

L

Γ (α)

∫ t

0

(t− s)α−1|y(s)− y0(s)|ds

−
bL

Γ (α)(a+ b)

∫ T

0

(T − s)α−1|y(s)− y0(s)|ds

≤ 2εEα(t
α) +

L

Γ (α)

∫ t

0

(t− s)α−1|y(s)− y0(s)|ds−
bLrα

αΓ (α)(a + b)

≤ M +
L

Γ (α)

∫ t

0

(t− s)α−1|y(s)− y0(s)|ds

Now, by Remark 1, we have

u(t) ≤ MEα(Lt
α)

Thus, the conclusion of our theorem holds.

6 Conclusion

In this paper, we have discussed the Mittag-Leffler-Hyers-Ulam stability frac-
tional differential equation with the boundary condition, that P. Muniyappan
and S. Rajan [14] proved Hyers-Ulam stability of fractional differential equa-
tion (1) with the boundary condition (2).



Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation 31

References

1. M.R. Abdollahpour, R. Aghayari, and Th.M. Rassias, Hyers-Ulam stability of associated
Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl.,
437, 605–612 (2016).

2. M. Benchohra, S. Hamani, and S.K. Ntouyas, Boundary value problems for differential
equations with fractional order, Surveys in Mathematics and its Applications, 3, 1–12
(2008).

3. M.H. Derakhshan, A. Ansari, On Hyers-Ulam stability of fractional differential equa-
tions with Prabhakar derivatives, International mathematical journal of analysis and its
applications, 38(1), doi: 10.1515/anly-2017-0029 (2018).

4. N. Eghbali, V. Kalvandi, and J.M. Rassias, A fixed point approach to the Mittag-Leffler-
Hyers-Ulam stability of a fractional integral equation, Open Mathematics, 14, 237–246
(2016).

5. S.M. Jung, Hyers-Ulam stability of linear differential equations of first order, II, Appl.
Math. Lett., 19(9), 854–858 (2006).

6. S.M. Jung, Hyers-Ulam stability of a system of first order linear differential equations
with constant coefficients, J. Math. Anal. Appl., 320(2), 549–561 (2006).

7. S.M. Jung, A fixed point approach to the stability of differential equations y′(t) = F (x, y),
Bull. Malays. Math. Sci. Soc., 33, 47–56 (2010).

8. Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer,
(2009).

9. A.A Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, Volume 204, (2006).

10. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differ-
ential Equations, John Wiley and Sons, Inc., New, York, (1993).

11. T. Miura, S.M. Jung, and S.E. Takhasi, Hyers-Ulam-Rassias stability of the Banach
space valued linear differential equation y′ = λy,, J. Korean Math. Soc., 41(6), 995–1005
(2004).

12. T. Miura, S. Miyajima, and S.E. Takahasi, A chracterization of Hyers-Ulam stability
of first order linear differential operators, J. Math. Anal. Appl., 286(1), 136–146 (2003).

13. T. Miura, S. Miyajima, and S.E. Takahasi, Hyers-Ulam stability of linear differential
operator with constant coefficients, Math. Nachr., 258, 90–96 (2003).

14. P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equa-
tion, International Journal of Pure and Applied Mathematics, 102(4), 631–642 (2015).

15. M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk. Dydakt.
Prace Mat., 13, 259–270 (1993).

16. M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differ-
ential equations, Rocznik Nauk. Dydakt. Prace Mat., 14, 141–146 (1997).

17. I. Podlubny, Fractional Differential Equations. Academic Press,London, (1999).
18. J.R. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations,
Applied Mathematics Letters, 25(4), 723–728 doi: 10.1016/j.aml.2011.10.009 (2012).

19. H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a
fractional differential equation, J. Math. Anal. Appl., 328, 1075–1081 (2007).


